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1 Introduction

Van Benthem (2008) characterized monotonicity inferences, an important type
of Natural Logic inferences, as “inferences with inclusion premises” of the form
“P<Q = ¢(P) < ¢(Q). He also proposed the study on “inferences with ex-
clusion premises” of the form “P < =Q = ¢(P) < —¢(Q)”, which we call “oppo-
sition inferences”. In recent years, some scholars, e.g. MacCartney and Manning
(2009), MacCartney (2009), Icard (2011), have started to study opposition in-
ferences as a new type of Natural Logic inferences from different perspectives
based on different frameworks. This paper is a study of opposition inferences as
a generalization of monotonicity inferences based on the Generalized Quantifier
Theory (GQT) framework.

2 Basic Definitions

First of all, let us review the definition of increasing monotonicity in the right
argument for type (1,1) generalized quantifiers (i.e. determiners)®.

! In what follows, we use A and B to denote the left and right arguments of a de-
terminer, respectively. We also use the symbol “<” to denote the subset relation
between sets as well as the entailment relation between propositions. Note that in-
creasing monotonicity in the left argument can be defined analogously.
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Definition 1: Let @ be a determiner, then @ is increasing in the right argument
iff for all A, B, B', B< B’ = Q(A)(B) < Q(A)(B").

Note that an equivalent definition can be obtained by replacing both occur-
rences of “<” by “>” in the above definition. Based on Definition 1, we may de-
note increasing monotonicity figuratively by “<—<” (or equivalently “>—>").
Analogously, decreasing monotonicity may be denoted figuratively by “<—>”
(or equivalently “>—<"). Now “<” and “>” are just two possible relations be-
tween sets / propositions. If we replace them by more general binary relations
Ry, Ry (written in prefix form), we will obtain a more general definition?.

Definition 2: Let @ be a determiner, then @) is Ry — Rs in the right argument
iff for all A, B, B', Ry[B, B] = Ra[Q(A)(B), Q(A)(B).

Hence, increasing and decreasing monotonicites are just special cases of Def-
inition 2 with R; and R, instantiated as the “inclusion relations”, i.e. < and
>.

Apart from “inclusion relations”, we may also consider “exclusion relations”.
In this paper, we will consider two “exclusion relations” that are disjunctions
of relations in the classical square of opposition: CC (standing for “contrary
or contradictory”) and SC (standing for “subcontrary or contradictory”). In
classical logic, two propositions p and ¢ satisfy the CC relation (denoted CC|p,
q] iff they cannot be both true, and they satisfy the SC relation (denoted SC|p,
q]) iff they cannot be both false. More generally, we may adopt the following
definitions so that these two relations are also applicable to sets: let X and X’
be sets or propositions, then

CC[X, X'| & X < -X';SC[X, X'] & -X < X' (1)

For example, we have CC[YOUNG, OLD] and SC[AGED-OVER-50, AGED-
BELOW-51] because an individual cannot be young and old at the same time,
whereas an individual must be either aged over 50 or aged below 51. According
to (1), we also have

CC[X, X'] ¢ SC[-X, ~X'] (2)

By instantiating R; and R in Definition 2 as CC and SC, we then have 4
possible properties of determiners: CC—CC, CC—SC, SC—CC and SC—SC.
These 4 properties will henceforth be called “opposition properties” (OPs).

3 OPs of Determiners

Our next task is to classify some commonly used determiners according to their
OPs in the two arguments. For convenience, I will denote the sets of determiners
possessing or not possessing a certain OP in a certain argument by placing a
“+” or “—” sign on the left and right-hand sides of the name of the OP. For

2 Similar property in the left argument can be defined analogously.
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instance, —CC—CC+ denotes the set of those determiners that are CC—CC in
the right but not left argument.
In what follows I first state and prove four propositions:

Proposition 1: A determiner ) possesses a certain OP in its right argument
iff each of its outer negation (denoted —@Q), inner negation (denoted @—) and
dual (denoted Q%)% possesses a different OP in its right argument according to
the following table:

Q -Q Q- Q
CC—CC|CC—SC|SC—CC|SC—SC
CC—SC|CC—CC|SC—SC |SC—CC
SC—CC|SC—SC |CC—CC|CC—SC
SC—SC|SC—CC|CC—SC|CC—CC

Proof: Here we only prove the first row of the table. The remaining rows can be
proved similarly. By Definition 2 and (1), @ € CC—CC+ iff

CC[B, B'] = Q(A)(B) < ~(Q(A)(B")) (3)

Now (3) is equivalent to

CC[B, B'] = ~(=Q(A)(B)) < ~Q(A)(B") (4)

Substituting the arbitrary sets B and B’ by their negations and using (2) and
the definitions of inner negation and dual, (3) and (4) can be rewritten as

SC[B, B'] = @=(A)(B) < ~(Q~(4)(B") ()

SCIB, B'] = ~(Q*(A)(B)) < Q*(A)(B') (6)

From (4)-(6), we have =Q € CC—SC+, Q- € SC—CC+ and Q% € SC—SC+.
0

Proposition 2: Let Q; and Q2 be determiners such that Q1 < Q2.

(a) If Q2 is CC—CC (SC—CC) in an argument, then so is @; in the same
argument.

(b) If @; is CC—SC (SC—SC) in an argument, then so is 2 in the same
argument.

3 Quter negation, inner negation and dual are as defined in Peters and Westerstahl
(2006).

1 Q1 < Qg iff for all A, B, Q1(A)(B) < Q2(A)(B). From this we can define the
following: Q1 = Q2 iff @1 < Q2 and Q2 < Q.
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Proof: Here we only prove part (a). Part (b) can be proved similarly. Suppose
Q2 € CC—CC+ and CC[B, B’]. Let ||Q1(A)(B)| = 1. Then since Q1 < @2,
we have ||Q2(A)(B)|| = 1. But then we must have [|Q2(A4)(B’)|| = 0. By @1 <
Q2 again, we have ||Q1(A)(B’)|| = 0. We have thus proved that CC[B, B'| =
CClQ1(A)(B), Q1(A)(B")], i.e. @1 € CC—CC+. The proofs for the cases Q2 €
+CC—CC, SC=CC+ and +SC—CC are exactly the same. [

Proposition 3: Let @1 be a symmetric determiner and Q)2 be a contrapositive
determiner®.

(a) Q1 possesses a certain OP in an argument iff () possesses the same OP in
the other argument.

(b) Q2 is CC—CC in an argument iff Q2 is SC—CC in the other argument. Q2

is CC—SC in an argument iff Q2 is SC—SC in the other argument.

Proof: Here we only prove part (b). Part (a) can be proved similarly. Suppose
Q@2 € CC—CC+ and SC[A, A’], which by (2) is equivalent to CC[-A4, - A’]. Let
|Q2(A)(B)|| = 1. By the contrapositivity of @2, this is equivalent to ||Q2(—B)
(=A)|| = 1. But then we must have ||Q2(—B)(—A")|| = 0. By the contrapositivity
of Q2 again, this is in turn equivalent to ||Q2(A’)(B)|| = 0. We have thus proved
that SC[A, A'] = CC[Q2(A)(B),Q2(A")(B)], i.e. Q2 € +SC—CC. Similarly, we
can prove that if Q2 € +SC—CC, then Q3 € CC—CC+. The proofs for the
cases 3 € +CC—CC, CC—SC+ and +CC—SC are exactly the same. [

Proposition 4: On condition that A # (%, (at least r of) € CC—CC+ for
1/2 < r < 1; (more than r of) € CC—CC+ for 1/2 < r < 1; (exactly r of) €
—CC—=CCfor0<r<i1.

Proof: Let ||(at least r of )(A)(B)|| = 1 for 1/2 < r < 1 and CC|[B, B’]. Then
by (1), B < —B’. Since “(at least r of )” is right increasing, we have ||(at least r
of J(A)(=B')|| = 1, which is equivalent to ||(at most 1 —r of )(A)(B’)|| = 1. Since
1/2 < r < 1, this entails ||(less than r of )(A)(B’)|| = 17, which is equivalent
to ||(at least v of )(A)(B’)|| = 0. We have thus shown that CC[B, B'| = CC|(at
least r of )(A)(B), (at least r of )(A)(B')], i.e. (at least r of) € CC—CC+ for
1/2 < r < 1. The fact that (more than r of) € CC—CC+ for 1/2 < r < 1 can
be proved similarly.

5 Symmetry and contrapositivity are as defined in Zuber (2007).

5 In what follows, we assume that the truth condition of a proportional determiner
involves |A] in the denominator, e.g. ||(at least 7 of )(A)(B)|| =1 < |ANB|/|A| > r.
Thus when A = (), these proportional determiners have no truth values.

This step has made essential use of a property of numerical comparison: for 1/2 <
r<1,if x <1—r, then z < r. Note that this property is not derivable from the
monotonicity of the numerical comparative determiners “(at least r of )”, etc. Thus,
although the definitions of the CC / SC relations in (1) are expressed in the form
of subset relations, which is a characteristic relation of the monotonicity inferences,
opposition inferences are not subsumable under monotonicity inferences.

=1
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To prove that (ezactly r of ) € —CC—CC for 0 < r < 1, we devise a method
for constructing counterexample models. Choose natural numbers = and y such
that 2 /y = r. Construct two sets A and A’ such that |A| = |A'| = y and ANA' =
(). Choose a subset X of A and a subset X’ of A’ such that | X| = |X'| = .
Then set U = AUA’ and B = X UX'. Tt is easy to check that under this model,
we have CC[A, A'] and ||(ezactly r of )(A)(B)|| = ||(exactly r of )(A")(B)|| = 1.
In other words, we do not have CC[(ezactly r of )(A)(B), (exactly r of )(A")(B)],
thus completing the proof. [J

Based on the above propositions, we can now determine the OPs of some
commonly used determiners. For example, let 1/2 < r < 1 and A # ), then
since (exactly r of) < (at least T of ), by Proposition 4 and Proposition 2(a),
we immediately have (ezactly r of), (at least r of) € —CC—CC+. Similarly,
since (exactly r of ) < (more than r — ¢ of ) where ¢ represents an infinitesimal
quantity such that 1/2 < r—e < 1, by Proposition 4 and Proposition 2(a) again,
we have (more than r — ¢ of) € —CC—CC+. Replacing the arbitrary variable
r —e by r, we can rewrite the last result as (more than r of) € —CC—CC+ for
1/2 <r < 1. From the above, we can derive even more results.

Since the outer negation of “(at least v of )" is “(less than r of )”, by Propo-
sition 1, we have (less than r of) € —CC—SC+ for 1/2 < r < 1. Moreover,
since the inner negation and dual of “(at least r of )" are “(at most 1 —r of)”
and “(more than 1 — r of)”, respectively, by Proposition 1 again, we have (at
most 1 — r of) € —SC—CC+ and (more than 1 —r of) € —SC—SC+ for
0 < 1—7r < 1/2. Replacing the arbitrary variable 1 — r by r, we can rewrite the
last results as (at most r of ) € =SC—CC+ and (more than r of ) € —SC—SC+
for 0 <r < 1/2.

A similar analysis for “(more than r of)” yields the following results: (at
most r of) € —CC—SC+ for 1/2 < r < 1; (less than r of ) € —SC—CC+ and
(at least 1 of ) € =SC—SC+ for 0 < r < 1/2.

For “(exactly r of)”, its inner negation may take two forms: “(all except r
of)” and “(exactly 1 — r of)”. Thus, by Proposition 1, we have (all except r
of) € =SC—CC+ for 1/2 < r < 1 and (ezactly 1 —r of) € —SC—CC+ for
0 < 1—1r < 1/2. Replacing the arbitrary variable 1 — r by r, we can rewrite
the last result as (ezactly r of) € —SC—CC+ for 0 < r < 1/2. Based on the
last result and using the fact that the inner negation of “(ezactly r of )” is “(all
except r of )” and Proposition 1 again, we obtain (all except r of ) € —CC—CC+
for 0 <r <1/2.

We next consider the classical determiner “some”. We have the relation: (at
least T of) < some for 0 < r < 1/2 & on condition that A # (. By virtue
of a previous result and Proposition 2(b), we know that some € SC—SC+
on condition that A # ). Note that this condition is essential because when
A =0, ||some(@)(B)|| = 0 for any B, and so we can never have SC[B, B’]
= —some(0)(B) < some(D)(B’). In other words, some ¢ SC—SC+ when A = (.

8 Although we also have (at least r of) < some for 1/2 < r < 1, since (at least  of)
€ CC—CCH+ in this range, this fact cannot be used to derive the OP of “some” by
virtue of Proposition 2.
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As for the left argument of “some”, by the symmetry of “some” and Proposi-
tion 3(a), we know that some € +SC—SC subject to certain condition. One
can easily find that this condition is B # ). The above facts will be represented
succinctly by: some € +SC—SC+ (B # 0; A # 0)°. By using a similar line
of reasoning and the fact that “no” is the outer negation of “some” and is a
symmetric determiner, we can find that no € +SC—CC+ (B # 0; A # ().

We next consider “every”. Since “every” is the dual of “some”, by Propo-
sition 1, we know that every € CC—CC+ subject to certain condition. This
condition is A # () because when A = (), ||every(0)(B)|| = 1 for any B, and so
we can never have CC[B, B'] = every(0)(B) < —every(0)(B’). As for the left
argument of “every”, since “every” is contrapositive according to Zuber (2007),
by Proposition 3(b), we know that every € +SC—CC subject to certain condi-
tion. This condition is B # U because when B = U, ||every(A)(U)| =1 for any
A, and so we can never have SC[A, A’'] = every(A)(U) < —every(A")(U). The
above facts will be represented succinctly by: every € +SC—CC N CC—CC+
(B # U; A # (). By using a similar line of reasoning and the fact that “(not
every)” is the outer negation of “every” and is a contrapositive determiner, we
can find that (not every) € +SC—SC N CC—SC+ (B # U; A # 0).

Based on the above results, we can now derive valid inferential relations be-
tween quantified statements. For example, the following are instances exemplify-
ing the facts every € CC—CC+ and some € SC—SC+ on condition that A # ()
(given that CC[YOUNG, OLD], SC[AGED-OVER-50, AGED-BELOW-51]):

Example 1: (Condition: There is some member in this club.) CC[“Every mem-
ber of this club is young”, “Every member of this club is o0ld”]

Example 2: (Condition: There is some member in this club.) SC[“Some member
of this club is aged over 50”, “Some member of this club is aged below 51”]

4 OPs of Iterated Quantifiers

An adequate theory on opposition inferences should achieve the following. Given
an iterated quantifier composed of n constituent determiners'® in the form:

QA {z1 ¢ . QulA) ({20 : Bar,...za)})...}) (7)

we hope to determine the OPs of this iterated quantifier in the predicates
Aq,...A,, B based on the OPs of Q1,...Q,. To this end, we first define the
notion of “OP-chain”:

® The conditions B # (; A # () are ordered such that the first (second) condition
corresponds to the left (right) argument of the determiner.

10 Tterated quantifiers refer to polyadic quantifiers constructed from monadic quanti-
fiers by “iteration” (Peters and Westerstahl (2006)). In this paper we only consider
iterated quantifiers constructed from determiners.
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Definition 3: Let X be a predicate under an iterated quantifier. Suppose X is
within the ¢ argument of Qr (1 < k < n), ix—1 argument of Qp_1, . .. 4 argument
of @1, where each of ig,ix_1,...41 is one of {left, right} and Qg, Qx—1, ... Q1 are
constituent determiners of the iterated quantifier ordered from the innermost to
the outermost layers. Then X has an OP-chain (R, Rk—1,... Ro), where each
of Ry, Ri—1,... Ro is one of {CC, SC}, iff Qi is Ry — Rk—1 in the i; argument,
Qr—1 is Rx—1 — Rg_o in the ix_; argument, ...Q; is Ry — Ry in the i
argument.
For instance, in the following iterated quantifier:

(at most 1/2 of )(A1)({z1 : no(Az)({z2 : B(x1,22)})}) (8)

»”

As is within the left argument of “no” and right argument of “(at most 1/2 of)
Since no € +SC—CC on condition that its right argument is non-empty and (at
most 1/2 of ) € CC—SC+ on condition that its left argument is non-empty, As
has an OP-chain (SC, CC, SC) on condition that Ay # O A{xa : B(x1,z2)} # 0.
Similarly, one can easily check that B has an OP-chain (SC, CC, SC) on condition
that Ay # 0 A Ay # 0, while A; has no OP-chain.

To facilitate the discussion below, we first state a proposition.

Proposition 5: Let P(z1,...2,) and P/(z1,...2,) be n-ary predicates and R
be one of {CC, SC}, then R[P, P'] = R[{zi : P(Y1,- - Yi—1, Tis Yit1s---Yn)}, {Ts :
P'(y1y...Yi—1,Ti,Yi+1,---Yn)}t] for any 1 < ¢ < n and any particular set of
Y1, Yi—1,Yit15- - - Yn-

Proof: Here we only prove the case in which R = CC. The case in which R =
SC is similar. Suppose CC[P, P’]. By (1), this is equivalent to P < —=P’. Then
for any particular set of y1,...¥;—1,%i+1,.-.Yn and any arbitrary x;, we have
Py1, - Yim1, %6, Yig1s - - - Un) < 2P/ (Y1, .- Yio1, i, Yit1, - - - Yn), and so we have
{zi + Py1, - ¥im1 Tis Yits - Yn) b <A@ 0 2P (Y15 Yim15 @0, Yi 1, - Yn) 1
But {x; : “P'(y1,-..-Yi—1,Ti, Yit1,---Yn)} can be rewritten as ={z; : P'(y1,...
Yie1, TisYit1,---Yn)}- Thus, by (1) again, we have CC[{x; : P(y1,. .. Yi—1, T,
Yit1s - Yn) ) {23 P/(ylw--yi—17fﬂi7yi+1,~~~yn)}}- U

We can now deduce a condition for determining the OPs of the iterated quan-
tifier (7) in its predicates based on the OPs of its constituent determiners. We
focus on the predicate B (the other predicates can be similarly treated). Let B
have an OP-chain (R,,, R,—1, Rn—2, ... Ro) and R, [B, B']. By Proposition 5, we
have R,[{zn : B(z1,...2n)},{xn : B'(z1,...2,)}] for any z1,...2,—1. More-
over, by the definition of OP-chain, @,, is R, — R,_1 in the argument {z,, :
B(x1,...x,)}, and so we have R, —1[Qn(An){xn : B(x1,...24)}), Qn(An) {2z
B'(x1,...1x,)})]. The above reasoning can be seen as a kind of “upward deriva-
tion”: from the R,, relation at the B-level, we derive the R,,_; relation at the Q.,,-
level. Now Q. (A,)({zy : B(z1,...x,)}) can be seen as an (n — 1)-ary predicate
(with 21, ...x,-1 as arguments). Thus, we can carry out the aforesaid upward-
derivation again and derive a R, o relation at the @, _1-level. The process of
determining the OPs of the iterated quantifier (7) in B is essentially a repetition
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of this upward derivation. After n rounds of derivation, we will finally derive the
Ry relation at the Q1 level. The net effect is thus R, (B, B') = Ro[Q1(A41)({z1 :
o Qn(An){n : B(xy,..oxp)}) - 1), Q1(A1) ({1 ¢ .. Qu(An){xy « B (24, ...
Zn)})...})], showing that the iterated quantifier is R, — Ry in B.

The above derivation relies on the condition that B has an OP-chain. This
condition does not hold either when at least one of Q1,...Q,, possesses none
of the OPs, or when the OPs possessed by Q1,...Q, do not form a chain. In
either case, the absence of the OP-chain blocks the upward derivation. Based on
the above discussion, we can thus formulate the following condition: let X be a
predicate under an iterated quantifier @,

Q is Ry — Ry in X iff X has an OP-chain (Ry, ... Ro) (9)

We now use (9) to determine the OPs of (8) in its predicates. Previously we
have already found that As and B both have the OP-chain (SC, CC, SC) subject
to different conditions, whereas A; has no OP-chain. Thus, according to (9), we
know that (8) is SC—SC in As on condition that A; # O A {z2: B(x1,22)} #0
and SC—SC in B on condition that A; # @ A Ay # 0. Moreover, (8) possesses
none of the OPs in A;. From the above result, we can derive the following (by
letting A; = CLUB, As = AGED-OVER-50, A, = AGED-BELOW-51, B =
ADMIT-AS-MEMBERS):

Example 3: (Condition: There is at least a club and every club admits some-
body as members.) SC[“At most 1/2 of the clubs admit nobody aged over 50 as
members”, “At most 1/2 of the clubs admit nobody aged below 51 as members”|

The derivation process of (9) is not exclusively valid for (7). In fact the
condition in (9) can also be applied to iterated quantifiers in a form different
than (7). Consider the following:

no(AN{z : some(B)({y : C(z,y)})})(D) (10)

The above iterated quantifier represents a quantified statement whose subject
contains a relative clause which is another quantified statement. Let’s determine
the OP of (10) in the predicate B by using (9). Since B falls within the left
arguments of “some” and “no”, which are +SC—SC and +SC—CC, respec-
tively, both on condition that their right arguments are non-empty, B has an
OP-chain (SC, SC, CC). By (9), (10) is SC—CC in B subject to the condition
that {y : C(x,y)} # OAD # 0. From the above result, we can derive the following
(by letting A = COMPANY, B = AGED-OVER-50, B> = AGED-BELOW-51,
C = EMPLOY, D = GO-BANKRUPT):

Example 4: (Condition: Every company employs somebody and some com-
pany went bankrupt.) CC[“No company employing somebody aged over 50 went
bankrupt”, “No company employing somebody aged below 51 went bankrupt”|

Note that monotonicity inferences of iterated quantifiers are governed by
the same condition as opposition inferences. We can define an analogous notion
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of MON-chain by replacing {CC, SC} with {<, >} in Definition 3 and modify
the condition in (9) by replacing “OP-chain” with “MON-chain”. The modified
condition can then be used to determine the monotonicities of iterated quantifiers
in its predicates.

For illustration, consider the iterated quantifier in (8) again. Let’s determine
the monotonicity of (8) in the predicate As. Since A, is within the left argument
of “no” and right argument of “(at most 1/2 of)”, and “no” is left decreasing
while “(at most 1/2 of )” is right decreasing, Az has a MON-chain (<, >, <) (or
equivalently, (>, <,>))!. According to the modified version of condition (9),
we know that (8) is <—< (or equivalently >—>), i.e. increasing, in A,. This
result is in accord with that obtained by using van Eijck (2007)’s “monotonicity
calculus”.

5 Concluding Remarks

According to van Eijck (2007), monotonicity inferences are an important type of
inferences in modern Natural Logic. Even syllogistics, the most important type
of classical inferences, are subsumable under monotonicity inferences. By propos-
ing the study on “inferences with exclusion premises”, van Benthem (2008) has
opened up a new direction of studies on Natural Logic. This paper is an imple-
mentation and generalization of van Benthem (2008)’s proposal and a contribu-
tion to the studies on Natural Logic. We have proposed a number of results by
which we can determine the OPs of determiners and iterated quantifiers com-
posed of constituent determiners, and derive valid inferential relations between
quantified statements.

Nevertheless, one may criticize that the inferential relations derived from the
OPs of determiners are too weak. For instance, by (1) the inferential relation in
Example 1 above can be rewritten as the following entailment:

Every member of this club is young. = Not every member of this club
is old.

Although valid, the conclusion above seems too weak because intuitively, one
would expect that the proper conclusion of the above inference should be “No
member of this club is old”.

However, entailment is not the only type of inferential relations. In some
situations, we do need to establish some other types of inferential relations (such
as the CC or SC relation) between sets / propositions. These situations do not
only include solving logical puzzles, but also include linguistic uses. One such use
is to determine the incompatibility between two sets / propositions. For instance,
from the fact that every € —CC—CC+'2, we know that “clubs every member

1 Note that since both increasing and decreasing monotonicities have two possible
representations, the determination of MON-chains is more complicated than that of
OP-chains. We may need to consider all possible representations of the monotonici-
ties involved in order to determine whether a predicate has a MON-chain.

12 Note that in Section 3, we have only established that every € CC—CC+. But since
every = (ezactly 100% of), by Proposition 4, we know that every € —CC—CC.
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of which is young” and “clubs every member of which is old” are incompatible,
whereas “clubs of which all young people are members” and “clubs of which all
old people are members” are not.

As incompatibility is an essential element of antonyms that feature in certain
linguistic structures, such as those identified by Jones (2002), the determination
of incompatibility can thus help us determine the well-formedness of certain
linguistic structures. For example, “X rather than Y” is a structure where X
and Y should be antonyms.

Moreover, the determination of incompatibility can also help us differentiate
between entailments and implicatures, especially the “alternate-value implica-
tures” studied by Hirsch-berg (1975). For instance, in the following discourse,
B’s conclusion is a logical entailment inferred from A’s utterance:

A: This is a club every member of which is young.
B: So it is not a club every member of which is old.

whereas in the following discourse, B’s conclusion (inferred from A’s utterance
under suitable context) should be seen as an alternate-value implicature that is
cancellable:

A: This is a club of which all young people are members.
B: So it is not a club of which all old people are members.

Note that the difference between the aforesaid two discourses is analogous to the
difference between the following two discourses:

A: She is my enemy. B: So she is not your platonic friend.
A: She is my colleague. B: So she is not your platonic friend.
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