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The studies on interrogatives in logic and formal semantics have been a diffi-
cult task because there is not an intuitive and uncontroversial notion of truth values
for interrogatives. Thus we see different frameworks for interrogatives with differ-
ent merits and demerits. In this paper, I will formulate a theoretical framework
that combines Gutierrez-Rexach ’s GQT-based framework (in [4, 5]) and Nelken
and Francez’s bilattice-based framework (in [7, 8]) for interrogatives and derive
certain valid inferential patterns involving interrogatives based on this framework.

Gutierrez-Rexach’s framework is based on Generalized Quantifier Theory
(GQT) and treats a WH-word as an interrogative quantifier (IQ) that requires,
in addition to the ordinary arguments, an “answer argument” to make a com-
plete proposition. For instance, the truth condition of “who” is represented by
“who(Y )(X) = 1 iff PERSON ∩ Y = X”, where X is the answer argument.
Thus, under this approach the question “Who sang” is semantically equivalent to
the noun phrase “person(s) who sang”.

Nelken and Francez’s framework assumes that interrogatives are of the same
semantic type as that of propositions. The denotation of declaratives and inter-
rogatives are thus both truth values. However, to distinguish the two types of
sentences, they adopt 5 truth values which are arranged in 2 lattices (hence a
“bilattice”). For declaratives, there are 3 truth values: t (“known to be true”), f
(“known to be false”) and uk (“unknown whether true or false”). For interrog-
atives, they borrow the concept of “resolvedness” from [1] and assume 2 truth
values: r (“resolved”) and ur (“unresolved”). The two groups of truth values are
related by the resolvedness conditions of interrogatives. For illustration, consider
the polar question “Did Mary kiss John” whose formal representation and re-
solvedness condition is “‖?(KISS(m, j))‖ = r iff ‖KISS(m, j)‖ ∈ {t, f}” (where
‖p‖ denotes the truth value of p), meaning that “Did Mary kiss John” is resolved
iff it is known whether Mary kissed John.

In this paper, I will develop a formal framework for interrogatives that is
based on Nelken and Francez’s framework but with substantial modification. The
reason for choosing Nelken and Francez’s framework as the basis is that their
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framework is extensional and is thus easier to manipulate than an intensional
framework such as [2]. Moreover, since their framework has a clear definition for
truth values for both declaratives and interrogatives, it is straightforward to define
inferential relations between interrogatives and is thus convenient to study the issue
of interrogative inferences under this framework.

Nevertheless, Gutierrez-Rexach’s GQT-based framework also has its merits
because WH-words do share certain characteristics with ordinary quantifiers. Un-
der Gutierrez-Rexach’s framework, certain phenomena related to interrogatives
can be studied from the perspective of GQT. Moreover, it is found that IQs also
possess certain properties that are thoroughly studied in GQT, such as conserva-
tivity, monotonicity, intersectivity, etc. For this reason, the framework proposed in
this paper will also incorporate certain elements of Gutierrez-Rexach’s framework.

Following the traditional GQT approach (such as in [6]), I will formulate the
resolvedness conditions of IQs as set relations. But since there are now 3 truth
values for declaratives, we first have to define new notions of sets as follows (in
what follows, U represents the universe):

Xt = {x ∈ U : ‖x ∈ X‖ = t} (1)

Xf = {x ∈ U : ‖x ∈ X‖ = f} (2)

Xuk = {x ∈ U : ‖x ∈ X‖ = uk} (3)

Thus, with respect to every concept X, we have 3 sets Xt, Xf and Xuk

containing elements that are known to belong to X, known not to belong to X
and unknown whether to belong to X, respectively.

We can now write down the resolvedness conditions of IQs using these notions.
For example, the resolvedness conditions for “who”, “(everybody except who)” and
“which” are as follows:

‖who(−)(B)‖ = r ⇔ (PERSON ∩B)uk = ∅1 (4)

‖(everybody except who)(−)(B)‖ = r ⇔ (PERSON −B)uk = ∅ (5)

‖which(A)(B)‖ = r ⇔ (A ∩B)uk = ∅ (6)

Note that the above conditions treat the IQs “who”, etc. as “strongly exhaus-
tive IQs”. Under this interpretation, the question “who(−)(B)” is resolved iff for
every element x, it is known whether x is a person belonging to B. In other words,
there is no element x such that it is not known whether x is a person belonging to
B. This is represented by the set relation (PERSON∩B)uk = ∅. The resolvedness
conditions of other IQs can also be formulated as Suk = ∅ for an appropriate set
S.

1In this paper, I adopt the notation in [6] that represents a quantified statement in the form of
a tripartite structure Q(A)(B) where Q, A and B represent the determiner, subject (excluding

the determiner) and predicate of the sentence, respectively. When Q is a noun phrase (such as

“who”) instead of a determiner, the A argument is empty and is represented by “−”. Thus, “Who
sang” is represented as “who(−)(SING)”.
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We can also determine the constituent answer (CA) and sentential answer
(SA) to a strongly exhaustive IQ as follows: let Q be a strongly exhaustive IQ whose
resolvedness condition has the form Suk = ∅, then on condition that ‖Q(A)(B)‖ =
r, the CA to Q(A)(B) is St, and the SA to Q(A)(B) is the proposition “S = Y ”,
where Y is the specific value of St in a certain model. This proposition can often
be re-expressed as a tripartite structure using the truth conditions of ordinary
quantifiers. For instance, if ‖who(−)(B)‖ = r, then the CA to “who(−)(B)” is
(PERSON ∩B)t, i.e. those who are known to be persons belonging to B. Further-
more, suppose the value of (PERSON ∩B)t in a certain model is the singleton set
{x}, i.e. x is the only person known to belong to B, then the SA to “who(−)(B)” is
the proposition “PERSON∩B = {x}”, which can be re-expressed as the following
tripartite structure “(nobody except x )(−)(B)”.

Apart from “strongly exhaustive” questions requesting complete information
concerning a subject matter, there are also “non-exhaustive” questions which re-
quest only partial information, as exemplified by the question “Who for example
did John see”. In this paper, WH-phrase “who for example” will be expressed as
a non-exhaustive IQ “(at least who)”. The resolvedness condition of this IQ can
be written as

‖(at least who)(−)(B)‖ = r ⇔ (PERSON∩B)t 6= ∅∨(PERSON∩B)f = U (7)

The condition above reflects the fact that the question “(at least who)(−)(B)”
is resolved iff either one of the following situations holds: (1) at least one element
is known to belong to PERSON ∩B; (2) all elements are known not to belong to
PERSON ∩B. The resolvedness conditions of other non-exhaustive IQs can also
be formulated as St 6= ∅ ∨ Sf = U for an appropriate set S.

The CA to a non-exhaustive IQ is not unique and so I will provide the set
of all possible CAs which can be determined as follows: let Q be a non-exhaustive
IQ whose resolvedness condition has the form St 6= ∅ ∨ Sf = U , then on condition
that ‖Q(A)(B)‖ = r, the CA set of Q(A)(B) is

CA set =

{
{X : ∅ 6= X ⊆ St}, if St 6= ∅
{∅}, if St = ∅ (8)

For instance, if ‖(at least who)(−)(B)‖ = r, then the CA set of “(at least
who)(−)(B)” is

CA set =

{
{X : ∅ 6= X ⊆ (PERSON ∩B)t}, if (PERSON ∩B)t 6= ∅
{∅}, if (PERSON ∩B)t = ∅ (9)

The above piecewise-defined function provides the CA set under two situa-
tions. If (PERSON ∩B)t = ∅, by (7) we must have (PERSON ∩B)f = U , i.e.
no person belongs to B and so the unique CA should be “nobody”, represented by
a singleton consisting of ∅. If (PERSON ∩B)t 6= ∅, then every non-empty subset
of (PERSON ∩ B)t, i.e. any set X satisfying ∅ 6= X ⊆ (PERSON ∩ B)t, is an
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acceptable CA. So all these Xs are collected into a set, and the CA can be any
member of this set.

To study inferences involving interrogatives, we need to define entailment and
equivalence relations involving interrogatives. Under the present framework, it is
straightforward to define these notions:

Let S = {s1, . . . sn} be a set of questions / propositions and q a question,
then S entails q (denoted S ⇒ q), iff in every model, (‖s1‖ ∈ {t, r} ∧
. . . ∧ ‖sn‖ ∈ {t, r})⇒ ‖q‖ = r.

(10)

Let q1 and q2 be questions, then q1 is equivalent to q2 (denoted q1 ⇔ q2),
iff in every model, ‖q1‖ = r ⇔ ‖q2‖ = r.

(11)

Based on the resolvedness conditions of IQs and the above definitions, we
can derive valid inferential patterns of IQs. For example, it can be shown that the
following equivalence, entailment and “interrogative syllogism” are all valid:

who(−)(¬B)⇔ (everybody except who)(−)(B) (12)

who(−)(B)⇒ (at least who)(−)(B) (13)

{which(M)(P ), which(M)(S), S ⊆M} ⇒ which(S)(P ) (14)

Note that (14) above is a generalization of a result in [3]. An instance of this
inference schema is that the two questions “Whom does Mary love” and “Who
are the men” collectively entail the question “Which men does Mary love” (on the
understanding that men are persons).

Moreover, we can also discuss the monotonicities of IQs, whose definitions are
analogous to those of ordinary quantifiers (such as in [9]). It can be shown that the
strongly exhaustive IQs considered in this paper are non-monotonic in all of their
arguments, whereas the non-exhaustive IQs are increasing in all of their arguments
within certain restricted domains. For example, it can be proved that within the
domain {B : (PERSON ∩B)f 6= U}, “(at least who)(−)(B)” is increasing in the
argument B.

Finally, as pointed out by Nelken and Francez, the relation between a question
and its SA can also be seen as an entailment relation. In this framework, we can
prove the following:

If p is an SA to q, then p⇒ q. (15)

The above result shows that “p⇒ q” is a necessary condition for “p is an SA
to q”. In other words, we can show that “p is not an SA to q” by showing that
“p 6⇒ q”, thus providing us with a method to show that a certain proposition is
not a resolved answer to a certain question. For instance, we can show that “(At
least) John sang” is not a resolved SA to “Who sang”, according to the strongly
exhaustive interpretation of “who”.
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