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Abstract. This paper introduces a semantic model for vague quantifiers (VQs) 

combining Fuzzy Theory (FT) and Supervaluation Theory (ST), which are the 

two main theories on vagueness, a common source of uncertainty in natural 

language. After comparing FT and ST, I will develop the desired model and a 

numerical method for evaluating truth values of vague quantified statements, 

called the Modified Glöckner’s Method, that combines the merits and 

overcomes the demerits of the two theories. I will also show how the model can 

be applied to evaluate truth values of complex quantified statements with 

iterated VQs. 

Keywords. vague quantifiers, Generalized Quantifier Theory, Fuzzy Theory, 

Supervaluation Theory, Modified Glöckner’s Method 

1 Introduction 

Vagueness is a common source of uncertainty in natural language. No doubt vague 

quantifiers (VQs) constitute an important type of quantifiers, the target of study of the 

Generalized Quantifier Theory (GQT). However, since it is difficult to model 

vagueness under standard Set Theory, the study on VQs has remained a weak point of 

GQT. 

In GQT, the most typical approach of representing the truth condition of a VQ is to 

represent it as a comparison between an expression consisting of the VQ’s arguments 

and a context-dependent standard. For example, according to [11], there are three 

interpretations of “many”. The truth condition of “many
2
” is as follows: 

 many
2
(A)(B) ↔ |A ∩ B| ≥ k|A| (1) 

where k  (0, 1) is a context-dependent constant. This condition says that “Many As 

are B” is true whenever the proportion of those As that are B among all As is at least 

                                                           
 This is the author-final version of a paper in H. van Ditmarsch, J. Lang, and S. Ju (Eds.): 

Logic, Rationality and Interaction, Lecture Notes in Computer Science, Volume 6953/2011, pp. 

61–73, 2011. The original publication is available at www.springerlink.com. 



as great as a standard, i.e. k, representing the threshold of “many”. Since k is 

dependent on context, the above condition may yield different truth values for two 

different quantified statements  “Many A1s are B1” and “Many A2s are B2” even if 

|A1| = |A2| and |A1 ∩ B1| = |A2 ∩ B2|. 

While this approach is most straightforward, what it genuinely reflects is the 

context dependence rather than the vagueness of VQs. In this paper, I will leave aside 

the issue of context dependence and concentrate on the vagueness of VQs. Moreover, 

I will only deal with VQs in a general manner and will not work out the detailed 

semantics of any particular VQ. Since vague concepts are characterized by blurred 

boundaries and uncertain membership, we need to invoke theories that deal with such 

phenomena. In the next section, I will introduce two such theories: Fuzzy Theory and 

Supervaluation Theory. The former is further divided into two approaches: the Fuzzy 

Set Cardinality Approach and the Quantifier Fuzzification Mechanism Approach. 

2 Basic Theories for VQs 

2.1 Fuzzy Theory (Fuzzy Set Cardinality Approach) 

Fuzzy Theory (FT) is a cover term for all those theories that are based on or derived 

from the Fuzzy Set Theory developed by [14]. Ever since [14], FT has become a new 

paradigm and is widely applied in many areas. Under FT, vague concepts are modeled 

by fuzzy sets, which differ from crisp sets (i.e. non-fuzzy sets) in one important 

aspect: instead of having sharp boundaries between members and non-members, 

every individual in the universe belongs to a fuzzy set to a certain degree ranging 

from absolute membership to absolute non-membership. By using ║p║ to denote the 

truth value of a proposition p, we can represent this degree by a membership degree 

function (MDF), ║x  S║, which outputs a numerical value in [0, 1] representing the 

degree to which an individual x belongs to a fuzzy set S
1
. For example, ║j  TALL║ 

= 0.7 means that John is tall to the degree 0.7. Sometimes, the MDF may take the 

form of a mathematical function that depends on a numerical value (henceforth called 

the “input” of the MDF). For example, as the tallness of a person depends on the 

person’s height, the aforesaid MDF for TALL may take the alternative form ║h  

TALL║, where h represents the height of a person. 

Fuzzy theorists have also defined certain crisp sets corresponding to each fuzzy set. 

Let X be a fuzzy set and α be a real number in [0, 1]. Then the α-cut (denoted X≥α), 

and strict α-cut (denoted X>α) of X are defined as follows (in what follows, U 

represents the universe): 

 X≥α = {x  U: ║x  X║ ≥ α} (2) 

 X>α = {x  U: ║x  X║ > α} (3) 

                                                           
1  In the literature, the MDF is often expressed as μS(x). In this paper I use ║x  S║ instead 

for convenience. 



Another characteristic of FT is that it treats Boolean operators (BOs) as truth 

functions such as
2
: 

 ║p  q║ = min({║p║, ║q║}) (4) 

 ║p  q║ = max({║p║, ║q║}) (5) 

 ║¬p║ = 1 – ║p║ (6) 

Inspired by GQT, fuzzy theorists also tried to formalize theories about VQs, with 

[15] and [12-13] being the earlier attempts. Since VQs can be seen as fuzzy sets of 

numbers, they can also be modeled by MDFs. For example, borrowing ideas from [1], 

we may represent the VQ “(about 10)” by the following MDF: 

 ║(about 10)(A)(B)║ = T–4, –1, 1, 4(|A ∩ B| – 10) (7) 

There are several points to note concerning the above formula. First, I have 

adopted [8]’s notation that represents a quantified statement in the form of a tripartite 

structure “Q(A)(B)” where Q, A and B represent the quantifier and its two arguments, 

respectively
3
. Syntactically, these two arguments correspond to the subject (excluding 

the quantifier) and the predicate of the quantified statement. 

Second, the above formula makes use of a piecewise-defined function Ta, b, c, d(x) 

with the following definition: 

 
0, if x < a  

 (x – a) / (b – a), if a  x < b  

Ta, b, c, d(x) =        1 if b  x  c (8) 

 (d – x) / (d – c), if c < x  d  

 0, if x > d  

The above function is named “T”, standing for “trapezoid”, because its graph has a 

trapezoidal shape. Figure 1 shows the graph of T–4, –1, 1, 4: 

                                                           
2  In the literature, there is a whole range of possible definitions of BOs. What follows are the 

“standard” definitions of the most commonly used BOs. 
3  In this paper, I only consider VQs that have two arguments. Using standard GQT notation, 

such kind of VQs belongs to type <1,1> quantifiers, also called “determiners”. 



 

Fig. 1. T–4, –1, 1, 4 

When the parameters are such that a = b or c = d, since there is no x such that a  x < 

a or c  x < c, the 2
nd

 or 4
th

 piece of (8) would disappear. In these cases, T becomes 

degenerate and its graph is shaped like half of a trapezoid. For example, Figure 2 

shows the graph of T–0.25, –0.1, ∞, ∞: 

 

Fig. 2. T–0.25, –0.1, ∞, ∞ 

Note that the function T given in (8) gives just one possible example of MDFs that 

may be used for representing VQs. In fact, any function whose general shape is 

similar to T can also serve the same purpose. More specifically, this function should 

be a function whose domain can be partitioned into 5 parts such that the values at the 

1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 parts are constantly 0, increasing, constantly 1, decreasing and 

constantly 0, respectively
4
. 

Using the MDFs for VQs, one can then evaluate the truth values of sentences 

containing VQs. However, the evaluation of truth values of these sentences 

                                                           
4  In case the function becomes degenerate, then some of the aforesaid parts would disappear. 



sometimes may involve some complications. For example, consider the following 

sentence: 

 About 10 tall girls sang. (9) 

This sentence contains the VQ “(about 10)”. According to (7), the input of the MDF 

for “(about 10)(TALL-GIRL)(SING)” is the number |TALL-GIRL ∩ SING| – 10. 

However, since TALL-GIRL ∩ SING is fuzzy, its cardinality is not well defined. We 

now encounter the following problem: how can we evaluate the truth value of (9) if 

we cannot say for sure how many “tall girls” there are? 

The solution of the early fuzzy theorists is to generalize the notion of crisp set 

cardinality to fuzzy set cardinality, which may have different definitions. One 

definition (called the Sigma Count) is the sum of the membership degrees of all 

individuals in the universe with respect to the fuzzy set. For example, if the fuzzy set 

TALL-GIRL ∩ SING = {1/a, 0.7/b, 0.5/c, 0.2/d, 0.1/e}
5
, then the Sigma Count of this 

set is 1 + 0.7 + 0.5 + 0.2 + 0.1 = 2.5. Using this cardinality, the truth value of (9) is 

then equal to ║2.5  (about 10)║, which is equal to 0 according to (7). This shows 

that (9) is absolutely false with respect to the aforesaid fuzzy set TALL-GIRL ∩ 

SING. This is in accord with our intuition because according to that fuzzy set, there 

are only 2 members (i.e. a and b) who may be counted as singing tall girls with a 

relatively high certainty, and 2 absolutely falls short of being “about 10”. 

2.2 Fuzzy Theory (Quantifier Fuzzification Mechanism Approach) 

Later, some scholars (e.g. [1], [4-5], [10]) realized the demerits of the old approach, 

which was able to treat only certain types of VQs and could not be applied to more 

general types of VQs. Moreover, since different notions of fuzzy set cardinality were 

used for different VQs, there was not a uniform treatment for various types of VQs. 

Instead of using the concept of fuzzy set cardinality, they proposed the concept of 

quantifier fuzzification mechanisms (QFMs). This approach distinguishes two types 

of VQs: semi-fuzzy and fuzzy quantifiers. Semi-fuzzy quantifiers are those VQs that 

only take crisp sets as arguments; while fuzzy quantifiers are those VQs that may take 

either crisp or fuzzy sets as arguments. Note that the distinction between semi-fuzzy 

and fuzzy quantifiers has nothing to do with the meaning of the VQs. Thus, the same 

linguistic quantifier such as “(about 10)” may manifest either as a semi-fuzzy or a 

fuzzy quantifier, depending on the types of its arguments
6
. 

Under this approach, all VQs are initially modeled as semi-fuzzy quantifiers. This 

has the advantage of greatly simplifying the semantics of VQs. We only need to 

                                                           
5  Here I adopt a notation used by fuzzy theorists under which a fuzzy set S is represented in 

the form {r1/x1, r2/x2, …} where xis are individuals and ris are their respective membership 

degrees, i.e. ri = ║xi  S║. In case the membership degree of an individual is 0, it is not 

listed. 
6  Since crispness can be seen as a special case of fuzziness, any crisp quantifier such as 

“every” can be seen as a semi-fuzzy or fuzzy quantifier, depending on the types of its 

arguments. 



formulate an appropriate MDF or truth condition for each VQ without worrying about 

its inputs because all inputs are crisp. The evaluation of truth values of sentences 

involving semi-fuzzy quantifiers is easy: we only need to plug the crisp inputs into the 

appropriate MDFs or truth conditions. When it comes to a sentence involving fuzzy 

quantifiers with fuzzy inputs (such as (9)), we have to make use of a QFM, which is 

in fact a mapping that transforms a semi-fuzzy quantifier to a fuzzy quantifier. 

Among the QFM approach, [4]’s framework has certain merits compared with its 

competitors in that it proposes a number of axioms that an adequate QFM should 

satisfy
7
. These axioms guarantee that the QFM will preserve crisp arguments, the 

identity truth function and monotonicities of a VQ as well as its arguments, and that 

the QFM will commute with the operations of argument transposition, argument 

insertion, external negation, internal negation, internal meet (as well as other 

Boolean) operators and functional application. Note that the aforesaid properties / 

operations are crucial to the study of quantifiers under GQT. 

Next I introduce a QFM proposed in [4]
8
. First let X be a fuzzy set and γ be a real 

number in [0, 1] which is called the “cut level”. We can reduce X into two crisp sets 

Xγ
min

 and Xγ
max

 at the cut level γ using the following formulae: for γ > 0 
9
, 

 Xγ
min

 = X≥ 0.5 + 0.5γ;    Xγ
max

 = X> 0.5 – 0.5γ (10) 

Based on the above, we can then define a family of crisp sets associated with X: 

 Tγ(X) = {Y: Xγ
min

  Y  Xγ
max

} (11) 

Then let Q be a semi-fuzzy quantifier and X1, … Xn be n fuzzy sets. Now for each of 

X1, … Xn we can define Tγ(X1), … Tγ(Xn). For each possible combination of Y1  

Tγ(X1), … Yn  Tγ(Xn), we can evaluate ║Q(Y1, … Yn)║ by using a suitable MDF or 

truth condition because Y1, … Yn are crisp sets. Then we aggregate the various values 

of ║Q(Y1, … Yn)║ for all possible combinations of Y1, … Yn into ║Qγ(X1, … Xn)║
10

 

by the following formula: 

 ║Qγ(X1, … Xn)║ = m0.5({║Q(Y1, … Yn)║: Y1  Tγ(X1), … Yn  Tγ(Xn)}) (12) 

where m0.5, called the “generalized fuzzy median”, is defined as follows. Let Z be a 

set of real numbers, then 

 inf(Z), if |Z|  2  inf(Z) > 0.5 (13) 

                                                           
7  Actually, Glöckner used the term “determiner fuzzification schemes” (DFSs) in [4]. In [5], 

he used QFMs as a general term for all mappings that map a semi-fuzzy quantifier to a fuzzy 

quantifier and used DFSs to refer to those QFMs that satisfy his axioms. To simplify nota-

tion, in what follows I will just use the umbrella term QFM. 
8  Glöckner has proposed a number of QFMs that satisfy all his axioms. This paper only dis-

cusses the simplest one. 
9  There are in fact separate definitions for Xγ

min and Xγ
max at γ = 0. But since a single point 

will only contribute the value 0 to a definite integral to be introduced below, we do not need 

to consider the case γ = 0 for computational purpose. 
10  Note that here Qγ should be seen as a fuzzy quantifier evaluated at the cut level γ. 



 

m0.5(Z) =     

sup(Z), if |Z|  2  sup(Z) < 0.5 

0.5, if (|Z|  2  inf(Z)  0.5  sup(Z)  0.5)  (Z = ) 

r, if Z = {r} 

Now for each cut level γ, we have a corresponding value ║Qγ(X1, … Xn)║. Finally 

we need to combine all these values into one value. According to [4], there are 

various methods of combination, one such method (which is denoted by “M” in [4]) is 

to use the standard definite integral
11

: 

 ║M(Q)(X1, … Xn)║ = 
1

0
║Qγ(X1, … Xn)║dγ (14) 

Although the above formula appears as an integral, in practical calculation of 

linguistic applications involving finite universes, we often only need to consider a 

finite number of variations of γ and ║Qγ(X1, … Xn)║ is constant at each such γ, and 

so the integral above often reduces to a sum, which can be seen as a “weighted 

average” of ║Qγ(X1, … Xn)║ at the various γs. 

2.3 Supervaluation Theory 

The Supervaluation Theory (ST) for vagueness is a keen competitor of the FT. Some 

supervaluation theorists, such as [3] and [6-7], pointed out certain flaws of FT. The 

most serious one is that FT cannot correctly predict the truth values of certain 

statements that must be true / false by virtue of traditional logical laws or intuition 

with respect to a model (such statements are called “penumbral connections” in [3]). 

Consider the following model: 

M1 U = {j, m}; TALL = {0.5/j, 0.3/m} 

Intuitively, according to this model, the truth values of the following sentences should 

both be absolutely false (where John and Mary are represented by j and m above): 

 John is tall and John is not tall. (15) 

 Mary is tall and John is not tall. (16) 

But using the truth functions for BOs (4) – (6), the calculation results show that the 

above sentences are both true to a certain degree under FT: 

 ║(15)║ = ║j  TALL║  ║j  TALL║ = min({0.5, 1 – 0.5}) = 0.5 

 ║(16)║ = ║m  TALL║  ║j  TALL║ = min({0.3, 1 – 0.5}) = 0.3 

Supervaluation theorists point out that the above wrong predictions arise from the 

wrong assumption that BOs are truth functional when applied to vague concepts. 

                                                           
11  In the following formula, “M” should be seen as a QFM that transforms the semi-fuzzy 

quantifier Q to a fuzzy quantifier M(Q). 



Note that the aforesaid flaw does not hinge on the particular definitions of BOs. It 

is argued in [7] that the definitions of BOs are subject to various plausible constraints. 

For example, one may hope that the definitions will preserve p → q ≡ ¬p  q, or that 

p → p is always true. But unfortunately, no set of definitions can satisfy all these 

plausible constraints under FT. 

Supervaluation theorists view vague concepts as truth value gaps and evaluate the 

truth values of vague sentences by means of complete specifications. A complete 

specification is an assignment of the truth value 1 or 0 to every individual with respect 

to the relevant vague sets in a sentence. In other words, a complete specification 

eliminates the truth value gaps and makes a vague sentence precise. Thus, this process 

is called “precisification”. If a sentence is true (false) on all admissible complete 

specifications, then we say that it is true (false)
12

. Otherwise, it has no truth value. 

The concept of “admissible” is very important in ST. Let’s use model M1 to 

illustrate this point. This model contains two individuals: j and m such that both are 

borderline cases of the vague set TALL with j taller than m. Here is a list of all 

admissible complete specifications for M1: (i) ║j  TALL║ = 1, ║m  TALL║ = 1; 

(ii) ║j  TALL║ = 1, ║m  TALL║ = 0; (iii) ║j  TALL║ = 0, ║m  TALL║ = 0. 

The above list does not include ║j  TALL║ = 0, ║m  TALL║ = 1 because it is 

inadmissible to assign a person to the set of TALL without at the same time assigning 

another person who is even taller to TALL. 

Having identified the admissible specifications, we can then evaluate ║(15)║ and 

║(16)║. Since (15) and (16) are both false on all of (i) – (iii) above, we obtain 

║(15)║ = ║(16)║ = 0, in conformity with our intuition. 

Thus, ST provides an alternative method that can deal with penumbral connections 

correctly. The same method can also be used to evaluate truth values of sentences 

containing VQs, although the precisification process may be more complicated. Using 

(9) as an example, the precisification process will involve two levels. At the first 

level, the vague concept “tall girl” will be precisified, after which we obtain a set 

TALL-GIRL ∩ SING whose cardinality is known. Then, at the second level, the VQ 

“about 10” will be precisified based on the aforesaid cardinality. 

The main weakness of ST is that it cannot distinguish different degrees of 

vagueness because it treats all borderline cases alike as truth value gaps. The 

evaluation of truth values of vague sentences under ST is uninteresting because all 

those vague sentences other than penumbral connections have no truth values. 

Moreover, in applied studies such as Control Theory, Artificial Intelligence, etc., the 

concept of membership degrees is of great use. That is why while FT has become 

very popular in applied studies, ST is only popular in theoretical studies. 

As a matter of fact, [6] has discussed how to develop a version of ST that 

incorporates the notion of degrees. More recently, [2] even showed that FT and ST, 

though often seen to be incompatible with each other, can in fact be combined. In the 

next section, I will propose such a combined theory. 

                                                           
12  In [3] the terms “super-true” (“super-false”) were used to denote propositions that are true 

(false) on all admissible complete specifications. To simplify notation, I will just call such 

propositions “true” (“false”). 



3 Combining FT and ST 

3.1 The Modified Glöckner’s Method 

Although all borderline cases can be treated as truth value gaps, they may behave 

differently in the process of precisification. For example, among all admissible 

complete specifications in which individuals are assigned to the set TALL, a taller 

person x is more likely to be assigned full membership of TALL than a shorter person 

y, because whenever y is assigned full membership of TALL in an admissible 

specification, x must also be so, but not vice versa. An individual x’s membership 

degree with respect to a vague set S may thus be seen as representing the likelihood of 

x being assigned to S in an admissible specification. By reinterpreting membership 

degrees in this way, we have established a link between FT and ST and the semantic 

model for VQs developed below will follow the tradition of FT by using MDFs as a 

measure of truth values of VQs. 

How are we to evaluate the truth values of vague sentences such as (15) and (16)? 

As mentioned ahove, the traditional FT approach of treating BOs as truth functions 

like (4) – (6) has to be abandoned. Neither can we use ST’s method because we now 

want to distinguish an infinite number of truth values. Fortunately, Glöckner’s method 

in [4] as introduced in Subsection 2.2 can meet our requirements. 

The essence of Glöckner’s method in [4] is to reduce a sentence with vague 

arguments to sentences with crisp arguments at different cut levels. The truth values 

of these sentences with crisp arguments are then evaluated using the MDFs or truth 

conditions and aggregated into the truth values of a vague quantified sentence at a cut 

level. Finally, the truth values at all cut levels are combined into a “weighted 

average”, which is then taken to be the truth value of the original sentence. 

Using the aforesaid method, there is no need to invoke (4) – (6). Moreover, the 

aforesaid reduction process can be seen as a precisification process and the family of 

crisp sets Tγ(X) as defined in (11) can be seen as a set of complete specifications of X. 

To guarantee that these are also admissible specifications, we need to modify the 

definition of Tγ(X) as shown below: 

Tγ(X) = {Y: Xγ
min

  Y  Xγ
max

  Y represents an admissible complete 

specification of X} 
(17) 

Glöckner’s method with the above modification will henceforth be called the Mod-

ified Glöckner’s Method (MGM). With MGM, we can evaluate ║(15)║ and ║(16)║ 

with respect to M1. Since the result of ║(15)║ is obvious, I only show the evaluation 

of ║(16)║. In order to use MGM, we first need to express (16) as a conjoined quanti-

fied statement. One way is to make use of the quantifier “every” satisfying the truth 

condition every(A)(B) ↔ A  B: 

 every({m})(TALL)  ¬every({j})(TALL) (18) 

Now, for 0 < γ  0.4, we have by (10), TALLγ
min

 = , TALLγ
max

 = {j}, By (17), 

Tγ(TALL) = {, {j}} since both  and {j} represent admissible complete 

specifications. Then, we have 



 
║everyγ({m})(TALL)  ¬everyγ({j})(TALL)║ 

 

= m0.5({║every({m})(Y)  ¬every({j})(Y)║: Y  Tγ(TALL)}) by (12) 

= m0.5({║every({m})()  ¬every({j})()║, ║every({m})({j})  

¬every({j})({j})║}) 
 

= m0.5({0})  

= 0 by (13) 

For 0.4 < γ  1, TALLγ
min

 = , TALLγ
max

 = {j, m}. By (17), Tγ(TALL) = {, {j}, 

{j, m}} since , {j} and {j, m} represent admissible complete specifications. Note 

that although   {m}  {j, m}, {m} is not included in Tγ(TALL) because {m} 

represents the inadmissible complete specification ║j  TALL║ = 0, ║m  TALL║ 

= 1. Then, we have 

 
║everyγ({m})(TALL)  ¬everyγ({j})(TALL)║ 

 

= m0.5({║every({m})(Y)  ¬every({j})(Y)║: Y  Tγ(TALL)}) by (12) 

= m0.5({║every({m})()  ¬every({j})()║, ║every({m})({j})  

¬every({j})({j})║, ║every({m})({j, m})  ¬every({j})({j, m})║}) 
 

= m0.5({0})  

= 0 by (13) 

Finally, by (14), 

║(16)║ = ║(18)║ = 
1

0
║everyγ({m})(TALL)  ¬everyγ({j})(TALL)║dγ 

 = 0 × (0.4 – 0) + 0 × (1 – 0.4) 

 = 0 

which is as desired. Note that if we had included {m} as an admissible complete 

specification for 0.4 < γ  1, then we would have got ║(16)║ = 0.3, contrary to our 

intuition. The above computation shows that MGM is able to correct the flaw of FT. 

3.2 Some Properties of MGM 

The modification of the definition of Tγ(X) as shown in (17) may incur a cost in that 

some nice properties of Glöckner’s original theory may be lost. By scrutinizing the 

proofs of the various lemmas and theorems in [4], one can find that the important 

properties of the orginal theory introduced in Subsection 2.2 are not affected by the 

modification with two exceptions, namely under MGM the QFM represented by M 



does not commute with internal meet and functional application. This means, for 

example, that when we evaluate
13

 

 ║Qγ(X1 ∩ X2)║ (19) 

for a particular γ, the result of first precisifying X1 and X2 and then intersecting the 

resultant crisp sets, i.e. 

 m0.5({║Q(Y1 ∩ Y2)║: Y1  Tγ(X1), Y2  Tγ(X2)}) (20) 

may be different from the result of first intersecting X1 and X2 and then precisifying 

the resultant fuzzy set, i.e. 

 m0.5({║Q(Y)║: Y  Tγ(X1 ∩ X2)}) (21) 

because {Y1 ∩ Y2: Y1  Tγ(X1), Y2  Tγ(X2)} may not be equal to {Y: Y  Tγ(X1 ∩ 

X2)}. The crux of the problem is that the intersection of two sets each representing an 

admissible complete specification may not be a set representing an admissible 

complete specification. For instance, while {a, b} represents an admissible complete 

specification for the set X1 = {1/a, 0.9/b, 0.8/c} and {b, c} represents an admissible 

complete specification for the set X2 = {0.5/a, 0.6/b, 0.7/c}, {a, b} ∩ {b, c} = {b} 

represents an inadmissible complete specification for X1 ∩ X2 = {0.5/a, 0.6/b, 0.7/c}. 

The same problem can be said of functional application for an arbitrary function. 

Is this a defect of MGM? Not necessarily. The essence of MGM is to deny the 

truth functionality of BOs and other arbitrary functions when applied to vague sets. 

Under MGM, when evaluating the truth value of a vague statement involving BOs or 

other arbitrary functions, we never apply the BOs or functions to the vague arguments 

directly because such application is undefined. Instead, we always proceed by first 

precisifying the vague arguments and then applying the BOs or functions to the 

resultant crisp arguments. This means, for example, that when evaluating (19) we 

always do (20), never (21), and so the problem that (20)  (21) simply does not arise. 

Thus, we may say that MGM has preserved the essential nice properties of Glöckner’s 

original theory. 

Note that MGM also has another nice property. Suppose the membership degrees 

with respect to the vague sets X1, ... Xn in a model are restricted to {0, 1, 0.5} and the 

truth values of a semi-fuzzy quantifier Q applied to any n crisp arguments are also 

restricted to {0, 1, 0.5}. Then for 0 < γ  1, we must have {║Q(Y1, … Yn)║: Y1  

Tγ(X1), … Yn  Tγ(Xn)} equal to any one of the following: {0}, {1}, {0.5}, {0, 1}, {0, 

0.5}, {1, 0.5}, {0, 1, 0.5}. By (12) and (13), we have ║Qγ(X1, … Xn)║ equal to 0, 1 

or 0.5 according as {║Q(Y1, … Yn)║: Y1  Tγ(X1), … Yn  Tγ(Xn)} contains only 0, 

only 1 or otherwise. Then by (14), we have ║M(Q)(X1, … Xn)║ also restricted to {0, 

1, 0.5}. So in this case MGM gives us the same result as that obtained by the 

supervaluation method if we use 0.5 to represent the truth value gap. MGM is thus 

                                                           
13  To simplify notation, in what follows I use the same symbol “∩” to denote the intersection 

operation of crisp sets and vague sets. Under FT, the vague version of “∩” may be defined 

based on the BO “”. 



indeed a generalization of the supervaluation method and provides us with the 

flexibility in determining how we should model vagueness. 

4 Iterated VQs 

According to [9], a sentence containing both subject and object(s) can be viewed as 

containing a polyadic quantifier. There is an important type of polyadic quantifiers, 

called iterated quantifiers, that can be represented by a tripartite structure with one of 

its arguments containing another tripartite structure. For example, the sentence 

 Every boy loves every girl. (22) 

may be seen as containing the iterated quantifier “(every … every)” and can be 

represented by the following tripartite structure: 

 every(BOY)({x: every(GIRL)({y: LOVE(x, y)})}) (23) 

which, in daily language, means “Every boy x is such that for every girl y, x loves y”. 

Based on the above expression, one can then evaluate the truth value of (22) with 

respect to any model according to the truth condition of “every”. 

MGM is readily applicable to iterated VQs
14

. Consider the following sentence: 

 Almost every boy met about 10 girls. (24) 

with respect to the following model: 

M2  BOY = {a, b, c, d, e} 

x a b c d e 

|GIRL ∩ {y: MEET(x, y)}| 10 9 11 13 8 
 

For computational purpose, suppose we use (7) as the MDF for “(about 10)” and 

the following MDF for “(almost every)” (where ε represents an infinitesimal positive 

magnitude): 

 ║(almost every)(A)(B)║ = T–0.4, –0.2, –ε, –ε(|A ∩ B| / |A| – 1) (25) 

To evaluate ║(24)║, we first write (24) as the following tripartite structure: 

 (almost every)(BOY)({x: (about 10)(GIRL)({y: MEET(x, y)})}) (26) 

In the above, {x: (about 10)(GIRL)({y: MEET(x, y)})} denotes the set of those who 

met about 10 girls. For convenience, let’s call this set X. Since X is a vague set, we 

cannot evaluate ║(26)║ directly. To facilitate further computation, we need to 

determine this vague set first. According to (7), for each x, ║(about 10)(GIRL)({y: 

MEET(x, y)})║ depends on the input |GIRL ∩ {y: MEET(x, y)}| – 10. By 

                                                           
14  For simplicity, here I only consider iterated VQs composed of 2 VQs. It is not difficult to 

generalize the theory to iterated VQs composed of more than 2 VQs. 



substituting the data given in M2 into (7) for each x, we can determine the following 

vague set: X = {1/a, 1/b, 1/c, 0.33/d, 0.67/e}. 

We then use MGM to evaluate ║(26)║. For 0 < γ  0.33, we have Xγ
min

 = {a, b, c, 

e}, Xγ
max

 = {a, b, c, e} and Tγ(X) = {{a, b, c, e}} because {a, b, c, e} represents an 

admissible complete specification. Then, we have ║(almost every)γ(BOY)(X)║ = 

m0.5({║(almost every)γ(BOY)({a, b, c, e})║}) = m0.5({1}) = 1. 

For 0.33 < γ  1, we have Xγ
min

 = {a, b, c}, Xγ
max

 = {a, b, c, d, e} and Tγ(X) = {{a, 

b, c}, {a, b, c, e}, {a, b, c, d, e}} because {a, b, c}, {a, b, c, e} and {a, b, c, d, e} all 

represent admissible complete specifications (Note that {a, b, c, d} represents an 

inadmissible complete specification and is thus excluded). Then, we have ║(almost 

every)γ(BOY)(X)║ = m0.5({║(almost every)γ(BOY)({a, b, c})║, ║(almost 

every)γ(BOY)({a, b, c, e})║, ║(almost every)γ(BOY)({a, b, c, d, e})║}) = m0.5({0, 1}) 

= 0.5. 

 Finally, by (14), 

║(24)║ = ║(26)║ = 
1

0
║(almost every)γ(BOY)(X)║dγ 

 = 1 × (0.33 – 0) + 0.5 × (1 – 0.33) 

 = 0.67 

Note that the above calculation has been greatly simplified because in (24), “boy”, 

“girls” and “met” are all represented by crisp predicates. In general, given a sentence 

with iterated VQs, we first express it in the following form: 

 Q1(A1)({x: Q2(A2)({y: B(x, y)})}) (27) 

Then for each possible x, we determine {y: B(x, y)}, which may be a vague set, and 

||Q2(A2)({y: B(x, y)})|| by MGM. By doing so, we will obtain the following set: {x: 

Q2(A2)({y: B(x, y)})} = {||Q2(A2)({y: B(xi, y)})||/xi, …}, where xi ranges over all 

possible xs. Finally, we can evaluate ||Q1(A1)({x: Q2(A2)({y: B(x, y)})})|| by MGM. 

5 Conclusion 

In this paper, I have discussed the merits and demerits of the FT and ST approaches to 

vagueness and have proposed MGM as a model for VQs. This model inherits certain 

desirable properties of Glöckner’s framework in [4]. It is also able to distinguish 

different degrees of vagueness and is thus useful for practical applications. Moreover, 

this model has overcome a demerit commonly found in FT frameworks, i.e. it yields 

correct results for penumbral connections. I have also shown that Glöckner’s original 

method in fact includes a process reminiscent of the precisification process of ST. 

This provides a plausible way to combine FT and ST, the two main competing 

theories for vagueness. 

Nevertheless, this paper has just concentrated on one particular QFM represented 

by M. As a matter of fact, Glöckner and other scholars have proposed other possible 

QFMs in [1] and [4-5] which I have not had the chance to discuss in this paper. It 



would be instructive to consider how these QFMs can be modified to suit the 

requirement of ST and what properties of Glöckner’s original theory are preserved 

under the modification and would thus be a possible direction for future studies. 
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