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Abstract. This paper proposes a new treatment of quantifiers under
the theoretical framework of Inquisitive Semantics (IS). After discussing
the difficulty in treating quantifiers under the existing IS framework,
I propose a new treatment of quantifiers that combines features of IS
and the Generalized Quantifier Theory (GQT). My proposal comprises
two main points: (i) assuming that the outputs of all quantifiers given
non-inquisitive inputs are non-inquisitive; and (ii) deriving a predicate
X™ of type s—(e"—t) corresponding to each predicate X of type e"—T.
By using X™, we can then restore the traditional treatment of GQT
under the IS framework. I next point out that to properly handle the
pair list reading of some questions with ‘“‘every”, we have to revert to
the old treatment of every. I also introduce (and prove) a theorem that
shows that the new treatment of every is just a special case of the old
treatment, and conclude that the new treatment of all quantifiers other
than every plus the old treatment of every is sufficient for the general
purpose of treating quantified statements and questions.

Keywords: Inquisitive Semantics - Generalized Quantifier Theory -
inquisitiveness - pair list reading.

1 Basic Notions of IS

In the 2010s, Inquisitive Semantics (IS) has risen to become an influential theory
that provides a uniform treatment for declaratives and interrogatives. To facilitate
subsequent discussion in this paper, I first introduce some basic notions of IS.
Under IS, there are three tiers of notions that are based on possible worlds.
The first tier consists of the possible worlds (hereinafter ‘“worlds”) themselves
with type s. The second tier consists of information states (hereinafter ‘“‘states’),
which are sets of worlds, with type s—t. The third tier consists of propositions,
which are non-empty sets of states, i.e. sets of sets of worlds, with type (s—t)—t,
that satisfy downward closure, i.e. whenever a state belongs to a proposition p,
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then all subsets of that state also belong to p. For convenience, the symbol T is
often used as an abbreviation of the type (s—t)—t.

Let p be a proposition and let’s assume that every proposition discussed in
this paper consists of a finite number of states (which is a standard assumption
in the IS literature). The alternatives of p are the maximal states of p, i.e. those
states that are not proper subsets of other states. We say that p is informative iﬂﬂ
Up # W, where W represents the set of all worlds. We say that p is inquisitive iff
p consists of more than one alternative. Apart from the usual set operations such
as U and N, there are also two special set operations under IS, namely the relative
pseudo-complement (represented by ) and the absolute pseudo-complement
(represented by ~), which can be defined as follows (in what follows, p and ¢ are
propositions, Power(S) represents the power set of the set .S):

pq = {i € Power(W) : Power(i) Np C q} (1)
~p = Power(W — Up) (2)

There are also two projection operators: the ! and ? operators, whose functions
are to turn any proposition into an assertion (which is defined as a non-inquisitive
proposition under IS) and a question (which is defined as a non-informative
proposition under IS), respectively. These two operators can be defined as follows:

Ip= Power(U D) (3)
=pU~p (4)

2 Treatment of Sub-sentential Constituents under IS

In recent years, attempts have been made under IS to treat sub-sentential con-
stituents. The types of these constituents are all based on the type of propositions,
i.e. T. For example, the types of unary and, in general, n-ary predicates are e—T
and e”—)TE| respectively. Moreover, it is assumed under IS that all simple n-ary
predicates (i.e. predicates with no internal structure) are non-inquisitive, i.e. the
outputs of these functions are non-inquisitive propositions. For illustration, let’s
consider the following modelEI

Model M1
U= {john,mary}
W = {w17w27w37w4}

sing = john — {{wy,wa}, {wr}, {wa}, 0};
mary — {{w,ws}, {wi}, {ws}, 0}

! In this paper, I use “iff” to represent “if and only if”’.

2 In this paper, I adopt the uncurried form of n-ary predicates, i.e. the input of an
n-ary predicate is an n-tuple. Here I use €™ to represent the type of n-tuples of
entities with type e.

3 In what follows, the symbol — is used to represent the “maps to’’ relation between
the input and output of a function.
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One may check that the unary predicate sing given above is a function with
type e—T. For each member x of U, this function maps x to the power set
of the set of worlds in which *“‘x sang” is true. Since this is the power set of a
set, it contains only one alternative and is thus non-inquisitive. Now consider
?(sing(john)), which can be used to represent the question “Did John sing?”.
By using the definitions given above, one can calculate

?(SZ’I’Lg(jOhTL)) = {{wlv 11)2}, {’LU3, 11)4}, {wl}v {wQ}v {’U)g}, {w4}’ (D} (5)

Note that the above result does have the form of a proposition, i.e. a non-
empty set of sets of worlds satisfying downward closure. Moreover, since |J
?(sing(john)) = W, this proposition is non-informative, i.e. a question. It has
two alternatives, i.e. {wy,wy}, and {ws, wy}, which represent the two possible
answers to the question “Did John sing?”. For example, {wy,ws} represents the
answer ‘“‘Yes’’ because w; and wsy are exactly the worlds in which ‘“‘John sang”
is true under M1.

Quantifiers, an important subtype of sub-sentential constituents, are also
treated in the recent IS literature. However, the treatment of quantifiers under
IS as in [2-3, 11] is different from the traditional treatment under the Generalized
Quantifier Theory (GQT). For example, the denotation of every is written in
[2-3] as:

every = AX\Y ﬂ (X(z)>rY(x)) (6)

xelU

which looks quite different from that given in standard GQT literature (such as
[8, 10]):

every = AXAY[X CY] (7)

Of course one may argue that the difference between (6) and (7) is superficial
because the denotation in (6) is in fact a “‘translation’ of the following first order
statement into the IS language: Vo € U[X (z) — Y (z)] (by ‘‘translating” V and
— to [ and >, respectively), which is equivalent to the set theoretic statement
X CY. But not all quantified statements have equivalent first order statements.
Consider the denotation of the quantifier most:

most = )\X)\YPXmY' > 1}

IX] 5 (8)

According to modern GQT studies (e.g. [10]), a quantified statement with
most cannot be rewritten as a first order statement. Thus, it is not known under
the existing IS framework how most should be treated. A consequence of this is
that some quantifiers that have been successfully treated under GQT may not
be treated in a comparably elegant way under the existing IS framework.

Moreover, there is also the issue of inquisitiveness of quantifiers. Note that
the output of every is non-inquisitive if both of its arguments are non-inquisitive,
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and is in general inquisitive if at least one argument is inquisitive. This property
which looks quite complicated is useful for handling the “pair list’’ reading of
some questions with “every”’; which will be discussed in detail in Section 4.

What about the other quantifiers? As will be elaborated in more detail in
Section 4, for constituent questions with quantifiers other than every, there does
not exist a reading similar to the “pair list”” reading in which the quantifier takes
a wider scope than the WH-word. Thus, for all quantifiers other than every, we
may assume a simpler property in terms of their inquisitiveness.

3 Proposed New Treatment of Quantifiers

3.1 The Proposal

Under the existing IS framework, the quantifier some is treated differently than
every in that the output of some is necessarily inquisitive regardless of the
inquisitiveness of its input. This property is similar to that of the propositional
function or, whose output is also necessarily inquisitive regardless of the in-
quisitiveness of its input. In the current IS literature (such as [1]), the similar
treatment of or and some is seen as an advantage because it provides a basis for
explaining the close connection between or and some (in that a statement with
some as quantifiers can be reformulated as a generalized disjunctive statement,
e.g. some(X)(Y) =V, cx Y(x)) as well as the use of the same morphemes (such
as Malayalam -oo and Japanese ka as recorded in [1]) in words for or and some
in many languages.

While the existing treatment of some under IS has some advantage, it also
brings in a disadvantage. Despite the close connection between or and some,
these two logical operators also have an important difference in terms of the
kinds of questions that they can form. On the one hand, some questions with
“or”” is ambiguous between an alternative question and a polar question. Consider
the question “Did Mary or Susan sing?”’. The most prominent reading of this
question is an alternative question which asks which of Mary and Susan sang.
But this question can also be (less prominently) interpreted as a polar question
which asks whether it was the case that either Mary or Susan sang. Both of the
above readings can be represented under the existing IS framework as shown
below (in what follows, the denotation of or is the set union operation):

Alternative question reading: or(sing(mary), sing(susan)) (9)

Polar question reading: ?(!(or(sing(mary), sing(susan)))) (10)

Note that in (9) above the sole existence of or is sufficient to make the whole
proposition inquisitive. In (10) above, the ! operator suppresses the inquisitiveness
of the proposition or(sing(mary), sing(susan)) and turns it into a disjunctive
assertion. The 7 operator then turns this assertion into a polar question about
the disjunction.
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On the other hand, questions with ‘“some’ does not exhibit the ambiguity as
found in questions with “or”’. Consider the question “Did some girl sing?” (or
more naturally, “Did any girl sing?”’ where ‘“‘some’ is replaced by the negative
polarity item “any’’). Unlike the question with “‘or’” above, this question can only
be interpreted as a polar question which asks whether there was any girl who
sang, and cannot be interpreted as a constituent question which asks which of the
girls in the context sang. Thus, this question can only be represented as (under

the existing IS framework, the denotation of some is AXAY [,y X (z) NY (2)]):

?(!(some(girl)(sing))) (11)

and cannot be represented as

some(girl)(sing) (12)

But under the existing IS framework, there is no way to ban the above represen-
tation.

To avoid the aforesaid difficulty, I propose that we abandon the similar
treatments of or and some and assume that the outputs of all quantifiers given
non-inquisitive inputs are non-inquisitive. In this way, all quantifiers can be
treated in a similar fashion. Note that this strategy is adequate for the usual
purpose of treating quantified statements, unless we are considering the pair list
reading or studying some special semantic-pragmatic aspects of some quantifiers,
such as the study in [4].

But what about the connection between or and some? Note that this con-
nection is valid only when viewed from a certain perspective. From another
perspective, one will find that some is connected with and rather than or. After
all, the denotation of some under GQT involves the N rather than the U operator.
In fact, as argued in [9], if we interpret propositions as subsets of a universe com-
prising only one element, x say, then all true propositions and false propositions
can be interpreted as {z} and 0, respectively, and we have pA g =1iff pngq # 0.
Thus, under this interpretation, A plays the same role as the quantifier some.
This shows that some can be said to have a close connection with either or or
and, depending on one’s perspective. There is thus no strong reason that or and
some must be treated similarly under a semantic theory, and my proposal of
abandoning the similar treatments of or and some is justifie

Having made the aforesaid assumption, I next observe that a simple n-ary
predicate under IS, whose output is the power set of a set of worlds, in fact
contains a lot of redundant information. For example, in the denotation of sing
given in Model M1 above, the output of sing(john) is {{wy,ws}, {w1},{ws},0},

4 As regards the use of the same morphemes in words for or and some in many
languages, I have to say that this fact cannot be explained straightforwardly under
the new treatment proposed in this paper. But I am of the view that the explanation
of this fact should not be considered a desideratum for the proper treatment of
quantifiers. After all, this is not a universal fact. At least it is not true in English
and Chinese.
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which contains redundant information because {wy, w2} alone can tell us that
John sang in w; and ws. By eliminating the redundancy, we can derive predicates
with a simpler type, i.e. s—(e™—t). More specifically, corresponding to each n-ary
predicate X with type e"—T, there is a predicate X* with type s—(e"—t) and
the two predicates can be transformed to each other by the following formulae
(in what follows, 2 and w are variables of types e™ and s, respectively):

X" = w[{z: {w} € X(x)}] (13)
X = Xz[Power({w: z € X*(w)})] (14)

By using X*, the traditional treatment of GQT can then be restored under
the framework of IS. For example, the denotation of every under IS will become

every = AXAY [Power({w : X*(w) CY*(w)})] (15)

Since X* and Y™* have type s—(e—t) and w is a variable with type s, X*(w)
and Y*(w) have type e—t, which is the type of unary predicates under GQT,
and so “X*(w) C Y*(w)” in (15) is exactly parallel to “X C Y in (7).

In general, let @ be a monadic quantiﬁelﬂ under GQT with n unary predicates
X1,...X, each of type e »t as arguments and C(Xy,...X,) be the truth
condition associated with @, i.e. @ has the denotation AX; ... AX,[C(X1,...X,)].
Then there is a corresponding quantifier (also denoted @) with n unary predicates
(also denoted Xj,...X,,) each of type e—T as arguments and the denotation of
Q@ under IS is

AX5 X [Power({w : C(XT (w),... X0 (w))})] (16)

n

According to (16), Q(X1)...(X,) is the power set of a set of worlds and is
thus non-inquisitive because it contains only one alternative. This shows that the
output of @ is non-inquisitive, which is consistent with the assumption above. By
using (16), one can then write down the denotations of other quantifiers under
IS. For example, the denotation of most under IS can be written as follows:

most = )\X/\Y[Power <{w : |X*(|1;’()*?wy)*(w)| > ;})} (17)

The proper treatment of quantifiers can help extend the empirical coverage of
IS, because in natural languages there are many questions containing quantifiers.
Under IS, given a declarative proposition p, the corresponding polar question can
be represented as ?p, where ? is the projection operator defined in (4). Similarly,
under IS a constituent question ‘“Which X is Y7, where X and Y are unary
predicates, can be represented as which(X)(Y'), where which is a non-exhaustive

® Monadic quantifiers are quantifiers all arguments of which are unary predicates. In
case at least one argument is an n-ary predicate (n > 1), the quantifier is called
polyadic.
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interrogative operator defined as follows (the context sensitivity of which is
ignored here)ﬂ

which = AX)\Y

? (U(XﬂY)(x))] (18)
zecU

For simplicity, only the ‘‘non-exhaustive’ reading of interrogative operators
is discussed in this paper. In brief, the non-exhaustive reading of the constituent
question “Which X is Y'?”” only requires the respondent to provide at least one
X that is Y or to answer that there is no X that is Y. The full list of X that
is Y is not required. A discussion of the various ‘‘exhaustivity’ of interrogative
operators can be found in [11-12].

3.2 Worked Examples

For illustration, let’s consider the following modeﬂ

5 Note that the following denotation of which is a bit different from those given in [3,
11] in that the following denotation includes a built-in ? operator. The inclusion of
this operator is to ensure that “No X is Y’ is an acceptable answer to the constituent
question “Which X is Y7”’. In other words, I assume in this paper that which does
not carry the existential presupposition.

" For unary predicates X and Y and individual z, (X NY)(z) = X (2) N Y ().

8 Note that the models M2 and M3 given in this paper are highly simplified models.
They do not include all logically possible worlds (the total number of all such worlds
is an astronomical number). For example, M2 does not include those worlds in which
John is a girl and John likes herself. One may think that M2 and M3 are models
that satisfy certain given preconditions. The satisfaction of these preconditions has
greatly reduced the number of possible worlds in these two models.
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Model M2
U= {john,bill,mary, jane, katy}
W = {wh wa, ’wg}
boy = john — Power(W);bill — Power(W)
girl = mary — Power(W); jane — Power(W); katy — Power(W)
like = (john,bill) — {{w1},0};
(john,mary) — {{w2},0};
(john, katy) — {{w2},0};
(bill, jane) — {{ws, w3}, {wa}, {ws}, 0};
(bill, katy) — {{ws},0};
(mary,jane) = {{w17 w3}’ {w1}7 {w3}7 w}v
(mary, katy) — {{w1},0}

boy* = wy — {john, bill}; we — {john, bill}; ws — {john, bill}
girl* = wy — {mary, jane, katy};

wo — {mary, jane, katy};

ws — {mary, jane, katy}
like* = wy — {(john, bill), (mary, jane), (mary, katy) };

wy — {(john, mary), (john, katy), (bill, jane)};

wsy — {(bill, jane), (bill, katy), (mary, jane)}

To simplify presentation, I adopt the following convention: if the output of a
function given a particular input is {0}, then that input (and output) will not
be shown. Thus, it is understood that under M2, we have girl(john) = {0} and
like(john, john) = {0}. For convenience, I have also provided the denotations of
boy*, girl* and like* above. One may check that these results can be obtained
by applying formula (13), and that the denotations of boy, girl and like can be
obtained from these results by applying formula (14).

Now consider the polar question ‘“Does some boy like most girls?”’. By using
the 7 operator and the standard GQT concepts for treating iterative quantifiers
such as those in [7-8, 10], this polar question can be formally represented as

?(some(boy)(most(girl) acc(like))) (19)

where ACC represents the accusative case extension operator in [7] (note that
“most girls” is in the accusative ‘‘semantic’ case in the above polar question,
hence the ACC operator). Let @ be a monadic quantifier. Then Qacc is an
arity reducer that turns any binary predicate R to a unary predicate Qacc(R)
such that?]

Qacc(R) = Az[Q(\y[R(z, y)])] (20)

I next compute the denotation of (19) with respect to M2 step by step. To
do this, T first use (20) to rewrite (19) as

9 Set theoretic notation is used in [7]. In this paper, this notation is changed to
A-notation for consistency with the other parts of the paper.
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?(some(boy)(Ax[most(girl)(Ay[like(x,y)])])) (21)

I then calculate Ay[like(z,y)]* for each x € U. For example, for z = john,
the most straightforward way to calculate Ay[like(john,y)]* is to make use of
like*, which tells us that John likes Bill in wy, Mary and Katy in ws and nobody
in w3. So we have

Myllike(john, y)]* = wy — {bill}; we — {mary, katy}; ws — 0

Similarly, we can calculate

Ay[like(bill, y)|" = w1 — 0;wa — {jane}; ws — {jane, katy}

*

Myllike(mary, y)|* = w1 — {jane, katy}; wa — O;ws — {jane}
Myllike(jane, y)|* = wy — 0; we — O;w3 — 0
Myllike(katy, y)|* = w1 — 0;wg — By w3 — 0

Using the denotations of most, girl* and Ay[like(x,y)]*, I next calculate
most(girl)(Ay[like(x,y)]) for each « € U. For example, for = john, among the
three worlds, only |girl* (w2) N Ay[like(john, y)|* (w2)|/|girl* (we)| > 1/2 is true,
we thus have

most(girl)(My[like(john,y)]) = {{w2}, 0}

Similarly, we also have

most(girl) (Ay|like(bill, y)]) = {{w3}, 0}

most(girl) (Ay|like(mary,y)]) = {{w1},0}
most(girl) yliike(jane, y)]) = {0}
most(girl) (M\y[like(katy, y)]) = {0}
Summarizing the above in the form of a unary predicate, we have
Az[most(girl)(\y[like(z,y)])] = john — {{ws},0};
bill — {{ws}, 0};
mary — {{w:},0}

jane — {0};
katy — {0}

Transforming the above predicate into the corresponding starred version by
using formula (13), we have:

Az[most(girl)(Ay[like(z,y)])]" = w1 — {mary}; ws — {john}; ws — {bill(} |
22
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Using the denotations of some, boy* and Az[most(girl)(Ay[like(z,y)])]*, I
then calculate

some(boy)(Az[most(girl) (Ayllike(z,y)])]) = {{w2, w3}, {wa}, {ws},0} (23)

Finally, using the definition of 7, I can then calculate

?(some(boy)(Ax[most(girl) (Ay[like(z, y)])])) = {{wa, w3}, {w1}, {wa}, {ws}&gﬁ)

The final result above contains two alternatives corresponding to the two
answers to the polar question ‘‘Does some boy like most girls?”” under M2, namely
{wa, w3} corresponding to “Yes” and {wy} corresponding to “No’’, because it is
true in wy and w3 (but not wi) that some boy likes most girls.

Next consider the constituent question ‘“Which boy likes most girls?”’. By
using the interrogative operator which, this constituent question can be formally
represented as

which(boy)(most(girl) acc (like)) (25)

I next compute the denotation of the above with respect to M2. As in the
above example, I first use (20) to rewrite the above as

which(boy)(Az[most(girl)(Ay[like(z, y)])]) (26)

As T have already calculated the denotation of Az[most(girl)(Ay[like(z,y)])]
above, what I have to do next is to use the denotations of which, boy and
Ax[most(girl)(Ay[like(z,y)])] to calculate the denotation of (26). To do this, I
first calculate (boy N Az[most(girl)(Ay[like(z,y)])])(z) for every z € U:

(boy N Ax[most(girl)(Ay[like(z, y)])]) (john) = {{ws}, 0}
(boy N Az[most(girl) (Ay[like(z, y)])]) (bill) = {{w3},0}
(boy N Ax[most(girl)(Ay[like(z,y)])]) (mary) = {0}
(boy N Ax[most(girl)(Ay|like(z,y)])]) (jane) = {0}
(boy N Ax[most(girl)(Ay[like(z,y)])]) (katy) = {0}

From the above, we have

)
)

(U (boy 0 Aa[most(girl) (Ayllike(z, y)])])(2) = {{wz}, {w3}, 0} (27)

zeU

And finally we obtain the result

which(boy)(Az[most(girl) Ayllike(z, y)])]) = {{ws}, {ws}, {wi}, 0} (28)
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The final result above contains three alternatives corresponding to the three
answers to the constituent question ‘“Which boy likes most girls?”” under M2,
namely {ws} corresponding to “John”, {ws} corresponding to “Bill” and {w;}
corresponding to ‘““No boy”’, because it is precisely John and precisely Bill who
likes most girls in wo and ws respectively, whereas no boy likes most girls in w;.

4 Pair List Reading

4.1 The Phenomenon

However, the new treatment of quantifiers proposed in this paper cannot handle
the pair list reading of some questions. Consider the question ‘“Which book
did every girl read?”’, which is ambiguous between at least two readings: the
“individual reading” and the “‘pair list reading’m Under the individual reading,
the question can be paraphrased as “Which book y is such that every girl read
y?”, and can thus be formally represented as

which(book)(every(girl) Nom (read)) (29)

where NOM represents the nominative case extension operator in [7] (note that
“every girl”’ is in the nominative ‘‘semantic’ case in the above question, hence
the NOM operator). The individual reading can be handled by the concepts
and method discussed in the previous section, except that we further need the
following definition of the NOM operator:

@nowm(R) = W[Q(Az[R(z,y)])] (30)

The individual reading will not be further discussed. What I am interested
in here is the pair list reading, which can be paraphrased as ‘“For every girl z,
which book did x read?”, and can thus be formally represented ad'|

every(girl) (which(book) acc(read)) (31)

Under the pair list reading, every takes a wider scope than which (whereas
every takes a narrower scope than which in (29)). Note that if we use the
new treatment of every as given in (15) to handle (31), we have to transform

10 According to the literature, this question also has a third reading, namely the
“functional reading’ which expects a functional answer like ‘“The book that her
mother recommended’”. While some people may consider pair list answers as a special
type of functional answers, it has been argued in [6] that pair list reading and
functional reading are two different readings, one argument being that questions like
“Which woman does no man love?”’ admit functional answers like ‘‘His mother” but
no pair list answer. For this reason, I do not treat the pair list reading as a special
case of the functional reading, which requires the conceptual tool of Skolem functions
as argued in [6] and will not be discussed in this paper.

Here which(book) is treated as a quantifier. Note that ‘‘which men”, “how many
students” and the like are called interrogative quantifiers in [2].

1

[N
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which(book) acc (read) into the starred version by using (13). But since this is
a question and is thus non-informative, we would then have which(book)acc
(read)*(w) = U for all w. But then we would have girl*(w) C which(book)acc
(read)*(w) for all w and hence every(girl)(which(book)acc(read)) = Power
(W) under every model, which is obviously an incorrect result. What can we do?

To properly handle the pair list reading, we have to revert to the old treatment
of every given in (6). But there is now a question that needs to be addressed.
Now that we have two treatments of every, i.e. the old treatment given in (6)
and the new treatment given in (15), we have to make sure that (6) and (15)
are consistent with each other. This is guaranteed by the following theorem (the
proof of which will be given in Subsection 4.3):

Theorem 1. Let X and Y be non-inquisitive unary predicates. Then Power
{w: X*(w) CY*(w)}) = Nyepy (X (2) > Y (2)).

By comparing the right hand sides of (6) and (15), one can see that (6)
is reduced to (15) when X and Y, i.e. the two arguments of every, are both
non-inquisitive by virtue of this theorem, and so the new treatment of every is
in fact a special case of the old treatment. When its two arguments are both
non-inquisitive, one can use the reduced form (15) for convenience.

But then we have a further question: do we need to do the same for other
quantifiers as we did for every above? The fact is that for other quantifiers,
there is no similar scope ambiguity between the quantifier and a WH-word as in
the case of every. Consider the question “Which book is recommended by some
teacher?”” which contains ‘“‘some’. Apart from the individual reading in which
some takes a narrower scope than which, i.e. a reading which can be paraphrased
as ‘“Which book y is such that some teacher recommends y?”’, does this question
also have a reading in which some takes a wider scope than which, i.e. a reading
which can be paraphrased as ‘‘Name some teacher z and tell me which book =
recommends”’? In the literature, such a reading is called the ‘‘choice reading’.
According to many scholars (including [1]), ‘‘choice reading” questions do not
exist in natural languages. For other quantifiers, it is even less likely that they
would give rise to a reading in which the quantifier takes a wider scope than a
WH-word. This means that we do not need to invoke the old treatment of these
quantifiers as in the case of every.

In conclusion, the new treatment of all quantifiers other than every as
proposed in this paper plus the old treatment of every (which in fact includes
the new treatment of every as a special case) is sufficient for the general purpose
of treating quantified statements and questions.

4.2 A Worked Example

In this subsection, I will illustrate the computation of the pair list reading.
Consider the following mode[™}

12 Tn what follows, RC, OT and DC can be seen as abbreviations of Robinson Crusoe,
Oliver Twist and David Copperfield, respectively.
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Model M3
U= {john,mary, jane, RC,OT, DC'}
W = {’U.)l, wa, wg}
boy =  john — Power(W)
girl =  mary — Power(W); jane — Power(W)
book = RC — Power(W); OT — Power(W); DC — Power (W)
read = (john, RC) — {{w1},0};
(jOhnv OT) = {{w27 w3}v {w2}7 {w3}7 (2)}7
(mary, RC) — {{w1, w2}, {w:}, {w2},0};
(mary, OT) — {{w:},0};
(mary, DC) = {{ws}, 0};
(jane, RC) — {{w2}, 0};
(jane’ OT) = {{wlv w2}7 {w1}7 {w2}a w}v
(jane, DC) = {{ws},0};

boy* = wy — {john}; we — {john};ws — {john}
girl* = wy — {mary, jane}; ws — {mary, jane}; ws — {mary, jane}
book™ = wy — {RC,0T, DC};ws — {RC,0T, DC}; w3 — {RC,0T, DC}
read* = wy — {(john, RC), (mary, RC), (mary, OT), (jane, OT)};

wy — {(john, OT), (mary, RC), (jane, RC), (jane, OT)};

ws — {(john, OT), (mary, DC), (jane, DC))}

I next compute the denotation of (31), i.e. the pair list reading of ‘““Which
book did every girl read?”’; with respect to M3. To do this, I first use (20) to
rewrite (31) as

every(girl) (Az[which(book)(A\y[read(x, y)])]) (32)

I then calculate which(book)(Ay[read(z,y)]) for each x € U. For example, for
x = john, since \y[read(john,y)] = RC — {{w1},0}; OT — {{ws, w3}, {ws},
{w3}7 (Z)}a by (18)7 we have

which(book)(Ay[read(john,y)]) = {{w1}, {wa, w3}, {wa}, {ws}, 0}

Similarly, we also have

which(book)(Ay[read(mary,y)]) = {{w1, w2}, {ws}, {w1}, {w=}, 0}
which(book)(Ay[read(jane,y)]) = {{w1, w2}, {ws}, {w1}, {w2}, 0}
which(book)(Ay[read(RC, y)]) = Power(W)
which(book)(Ay[read(OT, y)]) = Power (W)
which(book)(Ay[read(DC,y)]) = Power(W)

Summarizing the above in the form of a unary predicate, we have
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)\1:[which(book)()\y[read(z, y)D] = ]Ohn = {{wl}a {w27 ’LU3}, {w2}7 {w3}7 0}7
mary — {{wla w2}7 {w3}7 {wl}a {wQ}’ Q)}’
jane = {{wh U}Q}, {U)g}, {w1}7 {'LUQ}, (2)}7
RC — Power(W);
OT — Power(W);
DC — Power(W)

Finally, to compute (32), I use (6) and (1) to rewrite (32) as

m (i € Power(W) : Power(i) N girl(z) C Ax[which(book)(Ay[read(z,y)])](2))
zeU
(33)

To compute the above formula, I first have to find out all sets of worlds ¢ such
that Power (i) N girl(z) C Az[which(book)(Ay[read(z,y)])](z) for each z € U.
For example, in case z = john, since girl(john) = {0}, Power(i) N girl(john)
must be a subset of A\x[which(book)(Ay[read(z,y)])](john) for any i, and so the
required set of sets of worlds in this case is Power(W). Similarly, in case z = RC),
OT or DC, the required set of sets of worlds is also Power(W).

In case z = mary, since girl(mary) = Power(W) and Az[which(book)
(Ay[read(z,y)))](mary) = {{w1, w2}, {ws}, {w1},{w2},0}, in order for Power(i)
Ngirl(mary) to be a subset of {{w1, w2}, {ws}, {w1}, {wa},0}, i must be a mem-
ber of {{wy,ws},{ws}, {w1}, {ws},0}, and every such member satisfies the re-
quirement. Thus, the required set of sets of worlds in this case is {{w;, w2},
{ws}, {w1},{wa},@}. Similarly, in case z = jane, the required set of sets of
worlds is also {{wy,wa}, {ws}, {w1}, {wa2}, 0}.

I then find the intersection of all the above sets of sets of worlds and finally
obtain

every(girl) (which(book) acc(read)) = {{w1,wa}, {ws}, {w1},{ws},0} (34)

The final result above contains two alternatives corresponding to the two
answers to the pair list reading of the question ‘“Which book did every girl read?”’
under M3, namely {w;, w2} corresponding to ‘“Mary read RC and Jane read
OT”, and {ws} corresponding to “Both Mary and Jane read DC”. Note that
although the books that Mary and Jane precisely read in w; and wsy are not the
same (Mary also read OT in w; while Jane also read RC in wsq), w1 and wq are
grouped under the same alternative in (34) because which in this question has a
non-exhaustive reading, i.e. “Mary read RC and Jane read OT” is an acceptable
answer to the question in both w; and ws.

4.3 Some Proofs

In this subsection, I will prove Theorem 1. But before doing this, I have to prove
three lemmas first.
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Lemma 1. Let p(w,x) be an arbitrary proposition with variables w and x. Then
Power({w : Vo € Ulp(w, z)]}) = ey (Power({w : p(w,x)})).

Proof. Let V be an arbitrary set of worlds. Then

V € Power({w : Vx € Ulp(w, z)|})
iff VC{w:Vx e Ulp(w,z)]}
iff Yw € VVax € Ulp(w, x)]
iff Vo eUVw e Vip(w,x)]
iff Ve UV C{w: p(w,z)}]
ifft Vax € U[V € Power({w : p(w,z)})]
iff Ve, cy(Power({w : p(w,z)}))

From the above, we have Power({w : Yz € Ulp(w,)]}) = (,cp (Power({w :
p(w,z)})).

Lemma 2. Let i, s and t be sets. Then i N's C t iff Power(i) N Power(s) C
Power(t).

Proof. (i) First assume that i N's C ¢. Let j be an arbitrary set and j €
Power(i) N Power(s), i.e. j € Power(i) A j € Power(s). But this is equivalent
toj CiAjCs ie jCins. From this we have j C ¢, i.e. j € Power(t).
We have thus proved that Vj[j € Power(i) N Power(s) — j € Power(t)], i.e.
Power(i) N Power(s) C Power(t).

(ii) Next assume that Power(i) N Power(s) C Power(t). Let w € iN s, i.e.
w € i Aw € s. But this is equivalent to {w} € Power(i) A {w} € Power(s), i.e.
{w} € Power(i) N Power(s). From this we have {w} € Power(t), i.e. w € t. We
have thus proved that Vw[w € iNs — w €], i.e. iNs C ¢.

Combining (i) and (ii) above, the lemma is proved.

Lemma 3. Let p and q be arbitrary non-inquisitive propositions. Then p > q =
Power({w : {w} € p— {w} € ¢}).

Proof. Since p and ¢ are non-inquisitive propositions, by the definition of inquisi-
tiveness, each of p and ¢ has exactly one alternative, say s and ¢, respectively. By
the definition of alternatives, we have p = Power(s) and ¢ = Power(t). From
this we have

Power({w: {w} € p = {w} € q})
={i:i C{w:{w} ep— {w} €q}}
={i:i C{w: {w} € Power(s) = {w} € Power(t)}}
={i:iC{w: {w} Cs— {w} Ct}}
={i:iC{w:wes—wet}}
={i:WweWpeisve{w:wes—wet}}
={i:YweW[wveiAves) —vet]}
={i:insCt}
= {i : Power(i) N Power(s) C Power(t)} (by Lemma 2)
= {i: Power(i)Np C q}
=pbgq (by (1))
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Proof of Theorem 1. Let X and Y be non-inquisitive unary predicates and z
be an arbitrary variable of type e. Then X(z) and Y (z) are non-inquisitive
propositions.

Power({w : X*(w) CY*(w)})
= Power({w : {z : {w} € X(z)} C{z: {w} € Y(x)}}) (by (13))
= Power({w :Vz e Uz € {z : {w} € X(v)} —
ze{w:{w} eY(2)}]})
= Power({w :Vz € U{w} € X(2) — {w} € Y(2)]})
=N,y (Power({w : {w} € X(z) = {w} € Y(2)})) (by Lemma 1)
=Nev(X(2)pY(2)) (by Lemma 3)

5 Conclusion

In this paper, I have proposed a new treatment of quantifiers. By combining
features of IS and GQT, this new treatment is able to extend the coverage of IS
to questions with quantifiers as well as retain the traditional truth conditions of
quantifiers under GQT. I have also pointed out that the old treatment of every
is still needed for treating the pair list reading of some questions with every. But
apart from this, the new treatment of all other quantifiers is sufficient for the
general purpose of treating quantified statements and questions. In fact, the new
treatment of every is useful and convenient in many cases, provided that we are
not treating the pair list reading. I have also shown that the new treatment of
every is just a special case of the old treatment.

However, given the limited space, this paper has only discussed the basics
of a theory of quantified statements and questions that combines IS and GQT.
More specifically, regarding quantifiers, this paper has only discussed monadic
quantifiers and iteration of these quantifiers. Regarding interrogatives, this
paper has only discussed polar questions and constituent questions with the non-
exhaustive which. In future studies, the coverage of this theory can be extended
to non-iterated polyadic quantifiers (such as those discussed in [8, 10]) and other
types of questions (such as the alternative questions, open disjunctive questions,
rising interrogatives and tag questions discussed in [1, 5]) as well as constituent
questions of other types of exhaustivity (such as the strongly exhaustive and
weakly exhaustive readings discussed in [11-12]).
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