
A Revised Projectivity Calculus

for Inclusion and Exclusion Reasoning∗∗∗∗

Ka-fat CHOW

The Hong Kong Polytechnic University

kfzhouy@yahoo.com

Abstract

We present a Revised Projectivity Calculus (denoted RC) that extends the scope of

inclusion and exclusion inferences derivable under the Projectivity Calculus (denoted

C) developed by Icard (2012). After pointing out the inadequacies of C, we introduce

four opposition properties (OPs) which have been studied by Chow (2012, 2017) and

are more appropriate for the study of exclusion reasoning. Together with the

monotonicity properties (MPs), the OPs will form the basis of RC instead of the

additive/multiplicative properties used in C. We also prove some important results of

the OPs and their relation with the MPs. We then introduce a set of projectivity

signatures together with the associated operations and conditions for valid inferences,

and develop RC by inheriting the key features of C. We then show that under RC, we

can derive some inferences that are not derivable under C. We finally discuss some

properties of RC and point to possible directions of further studies.

Keywords: inclusion; exclusion; opposition properties; projectivity signatures;

Natural Logic

1. Introduction

1.1 Overview

 In recent years, there arises an interest among some scholars (e.g. MacCartney

(2009), MacCartney and Manning (2009), Icard (2012, 2014), Icard and Moss

(2014), Chow (2012, 2017) in studying natural language reasoning involving the

exclusion relations (to be defined below) as an extension of the study of reasoning

involving the inclusion relations (also called monotonicity inferences) studied under

modern Generalized Quantifier Theory (GQT) and Natural Logic (or Natural

Language Inferences). Among the various approaches, Icard’s Projectivity Calculus

∗
 This is a post-peer-review, pre-copyedit version of an article published in Journal of Logic, Language and

Information, 29, pp. 163-195, 2020 (Published online: 2019). The final authenticated version is available online at
http://dx.doi.org/10.1007/s10849-019-09292-5.

is interesting because it extends the Monotonicity Calculus first developed by van

Benthem (1986) and Sánchez Valencia (1991), and deals with inclusion and

exclusion reasoning under the same system. An example of this mixed type of

reasoning is given below (discussed in detail in Icard (2012)):

(1) Every job that involves a giant squid is dangerous ≤

Not every job that involves a cephalopod is safe

The inference above involves the contradictory relation between every and not every,

the exclusive relation between dangerous and safe, the subset relation between squid

and cephalopod and the overall entailment relation (similar to the subset relation from

the point of view of Boolean algebra) between the two sentences.

 While the Projectivity Calculus developed by Icard (2012), which is denoted

“C”, can handle well exclusion reasoning of sentences that involve the classical

quantifiers, (i.e. every, some, no and not every) as well as some logical operators (e.g.

if, not)1, it fails to derive exclusion inferences that involve generalized quantifiers.

The problem is not that C fails to derive all exclusion inferences, which is not

surprising as Icard (2012) has already shown that C is incomplete2, but that it is based

on the additive, multiplicative, anti-additive and anti-multiplicative properties, which

are not appropriate notions for studying exclusion reasoning.

 In this paper, we will introduce four properties studied by Chow (2012, 2017) to

replace the four notions used in C. We will show that these new properties are more

appropriate for studying exclusion reasoning. We will then propose a Revised

Projectivity Calculus and show that this revised system can derive some inclusion and

exclusion inferences that are not derivable under C.

1.2 Some Basic Notions

 Before discussing the inadequacies of C, we first introduce some basic notions

used in C. These include relations between elements in a Boolean algebra and

properties of functions on Boolean algebras. Given a Boolean algebra В = (B, ¬, ∨, ∧,

1 Icard (2012) claimed that the quantifier most is multiplicative. But it will be shown below that more

than 1/2 of is not multiplicative. Note that many GQT scholars, such as Peters and Westerståhl (2006),
assume that most is equivalent to more than 1/2 of.
2 Icard (2014) provided an axiomatization for the inclusion and exclusion reasoning and conjectured
that the resulting calculus (called C2) is complete (but without proving it). Since C2 does not contain as
much detail as the calculus C developed in Icard (2012), the discussion of this paper is mainly based on
Icard (2012).

0, 1), we can define seven relations between elements in B. These seven relations

comprise a set which is denoted by R. The names, symbols and definitions of the

members of R are set out in the following table. In the following definitions, x and y

are elements of B.

Definition 1.13:

Name Symbol Definition

subset ≤ x ≤ y iff x ∧ y = x

superset ≥ x ≥ y iff x ∨ y = x

exclusive ∆ x ∆ y iff x ∧ y = 0

exhaustive ∇ x ∇ y iff x ∨ y = 1

equivalent ≡ x ≡ y iff x ≤ y and x ≥ y

contradictory ⊥ x ⊥ y iff x ∆ y and x ∇ y

general # x # y iff x ∈ B and y ∈ B

 Among the seven relations above, the first four relations are the basic ones, with

the subset and superset relations being the inclusion relations and the exclusive and

exhaustive relations being the exclusion relations. The definitions of the equivalent

and contradictory relations are based on those of the four basic ones. The general

relation is the most uninformative relation. It exists between any two elements of B.

Moreover, from Definition 1.1, one can deduce the following proposition4.

Proposition 1.2: For all x and y of a Boolean Algebra,

(i) x ∆ y iff x ≤ ¬y.

(ii) x ∇ y iff ¬x ≤ y.

By using the symmetry of ∆ and ∇ and the contrapositivity of ≤ and ≥, one can

deduce even more propositions, which will not be listed here.

 In the above, we have used the standard symbols ∨, ∧, 0, 1, ≤, ≥ for general

3 The names and symbols of the relations are adapted from MacCartney (2009), MacCartney and
Manning (2009) and Icard (2012). The definitions are taken from Icard (2012). The “exclusive” and
“exhaustive” relations are the same as the “CC” (short for “contrary or contradictory”) and “SC” (short
for “subcontrary or contradictory”) relations in Chow (2012, 2017). Moreover, in what follows, “iff” is

short for “if and only if”. Note that we have chosen to use ∆ and ∇ so that the shape of ∆ reminds us of

the “∧” in the definition of the exclusive property whereas the shape of ∇ reminds us of the “∨” in the
definition of the exhaustive property.
4 The following proposition can be easily proved by invoking the fact that x ≤ y iff x ∧ ¬y = 0 and de
Morgan’s Law. The above fact can be found in Keenan and Faltz (1985).

Boolean algebras. But in some cases (especially when talking about the truth

conditions of generalized quantifiers), it would be more convenient to use the

corresponding symbols in set theory, i.e. ∪, ∩, ∅, Ư, ⊆, ⊇ (note that all the subsets of

a universe Ư form a Boolean algebra). Hence, the definitions of ∆ and ∇ can also be

stated in set notation as “X ∆ Y iff X ∩ Y = ∅” and “X ∇ Y iff X ∪ Y = Ư”. Both the

standard notation and set notation will be used in this paper depending on the context.

 Note that the universe Ư discussed above has to be understood in a relative sense

depending on the context. In case the proposition under discussion involves entities of

different types, the entire universe should be seen as comprising a number of

sub-universes and ∇ is defined with respect to these sub-universes. For example,

suppose we are considering a proposition about “clubs” and “members”. Then the

universe associated with this proposition should be seen as comprising two

sub-universes, namely the set of all “clubs” and the set of all “members”. Although

{x: x is a member} ≠ Ư (because Ư also contains “clubs”), we should have {x: x is a

male member} ∇ {x: x is a female member} under certain context, because {x: x is a

male member} ∪ {x: x is a female member} = {x: x is a member}, where {x: x is a

member} is a sub-universe in this case.

 As pointed out in Icard (2012), there is a natural ordering among the members of

R, which is depicted by Fig. 1.

Fig. 1 Partial order of members of R

In Fig. 1, an arrow pointing from a relation ρ1 to another relation ρ2 means that ρ2 is a

stronger relation than ρ1, i.e. for all x and y ∈ B, x ρ2 y entails x ρ1 y. If we now use ≤

to represent the “stronger than” relation, then Fig. 1 can also be viewed as

representing a partial order comprising the members of R. We can also define the

meet (∧) between some of the members of R and so we have ≡ = ≤ ∧ ≥ and ⊥ = ∆ ∧

∇. Moreover, it can be easily seen that the members of R satisfy the following

proposition.

Proposition 1.3: Let ρ1, ρ2 ∈ R. Then for all x and y, x ρ1 y and x ρ2 y iff x (ρ1 ∧

ρ2) y.

 We next define the JOIN operation5 on the members of R as follows (adapted

from Icard (2012).

Definition 1.4: Let ρ1, ρ2 ∈ R. The JOIN of ρ1 and ρ2, denoted ρ1 JOIN ρ2, is the

strongest member of R such that if x ρ1 y and y ρ2 z, then x (ρ1

JOIN ρ2) z.

The results of the JOIN operation among the members of R are given in the following

table (adapted from Icard (2012)):

Table 1 The JOIN Operation

JOIN ≤≤≤≤ ≥≥≥≥ ≡ ∆∆∆∆ ∇∇∇∇ ⊥⊥⊥⊥ #

≤≤≤≤ ≤ # ≤ ∆ # ∆ #

≥≥≥≥ # ≥ ≥ # ∇ ∇ #

≡ ≤ ≥ ≡ ∆ ∇ ⊥ #

∆∆∆∆ # ∆ ∆ # ≤ ≤ #

∇∇∇∇ ∇ # ∇ ≥ # ≥ #

⊥⊥⊥⊥ ∇ ∆ ⊥ ≥ ≤ ≡ #

Note that ≡ and # behave like 1 and 0 in the ordinary multiplication, respectively.

 The JOIN operation enables us to derive inclusion inferences by combining

exclusion inferences appropriately. For example, from awake ∆ asleep and asleep ⊥

not asleep, we have, by Definition 1.4, awake (∆ JOIN ⊥) not asleep. From Table 1,

we obtain awake ≤ not asleep.

 We can also define properties of functions on Boolean algebras. The following

two properties are the most basic ones in the study of Monotonicity Calculus.

5 Note that the JOIN operation defined by Icard (2012) is different from the concept of “join” in a
partial order. To highlight this difference, the symbol representing this special operation is capitalized
in this paper.

Definition 1.56: Let f: В → B’ be a function on Boolean algebras, x and y be

elements of B.

(i) f is (monotone) increasing iff x ≤ y entails f(x) ≤ f(y), or equivalently x ≥ y

entails f(x) ≥ f(y).

(ii) f is (monotone) decreasing iff x ≤ y entails f(x) ≥ f(y), or equivalently x ≥ y

entails f(x) ≤ f(y).

(iii) f is monotonic iff f is either increasing or decreasing; f is non-monotonic iff f is

neither increasing nor decreasing.

 Apart from the monotonicity properties, Icard (2012) also defined the following

four properties, which can be seen as strengthened versions of the increasing or

decreasing properties.

Definition 1.67: Let f: В → B’ be a function on Boolean algebras, x and y be

elements of B.

(i) f is additive iff f(x ∨ y) ≡ f(x) ∨ f(y), and completely additive iff in addition f(1)

≡ 1.

(ii) f is multiplicative iff f(x ∧ y) ≡ f(x) ∧ f(y), and completely multiplicative iff in

addition f(0) ≡ 0.

(iii) f is anti-additive iff f(x ∨ y) ≡ f(x) ∧ f(y), and completely anti-additive iff in

addition f(1) ≡ 0.

(iv) f is anti-multiplicative iff f(x ∧ y) ≡ f(x) ∨ f(y), and completely

anti-multiplicative iff in addition f(0) ≡ 1.

For convenience, the above properties will be collectively called “+-× properties”.

They serve as the cornerstone of Icard’s Projectivity Calculus.

 Icard (2012) also proved the following two propositions, which relate the

monotonicity properties and the +-× properties.

Proposition 1.7: Let f: В → B’ be a function on Boolean algebras. The following

are equivalent:

(i) f is increasing;

(ii) f(x) ∨ f(y) ≤ f(x ∨ y);

(iii) f(x ∧ y) ≤ f(x) ∧ f(y).

6 Icard (2012) used the terms “monotone” and “antitone” instead of “increasing” and “decreasing”.
7 What Icard (2012) studied is the “complete” version of the properties.

Proposition 1.8: Let f: В → B’ be a function on Boolean algebras. The following

are equivalent:

(i) f is decreasing;

(ii) f(x ∨ y) ≤ f(x) ∧ f(y);

(iii) f(x) ∨ f(y) ≤ f(x ∧ y).

These two propositions show that the increasing property satisfies part of the

definitions of the additive/multiplicative properties whereas the decreasing property

satisfies part of the definitions of the anti-additive/anti-multiplicative properties, thus

showing that the +-× properties are indeed strengthening of the monotonicity

properties.

1.3 Inadequacies of C

 While the +-× properties are important properties of the classical quantifiers,

they do not cover some generalized quantifiers which satisfy important exclusion

inferences. In this subsection, we will discuss several types of such quantifiers.

 But before discussing these quantifiers, we first explain briefly how we represent

the argument structures of quantifiers. In this paper, quantified statements are

represented in the curried form Q(x1)(x2)...(xn) where Q represents the quantifier and

x1, x2, ... xn represent the 1st, 2nd, ... nth argument of the quantifier. The currying

operation has in fact transformed an n-ary function to n successive applications of

unary functions. As a result, we only need to deal with unary functions in this paper,

although for convenience we will often talk about “the nth argument” of a quantifier.

Moreover, to eliminate parentheses, we associate functional application to the left.

Thus, Q(x1)(x2) should be seen as a simplified form of (Q(x1))(x2).

 We now discuss proportional quantifiers such as more than r of, less than r of (0

< r < 1), etc. These quantifiers satisfy certain exclusion inferences, such as the

following8:

(2) More than 1/2 of the members are elderly ∆

More than 1/2 of the members are teenagers

This inference is valid because the two sentences above cannot be both true. It can be

8 In this paper, we treat proportional quantifiers more than / less than / at least / at most r of the as
equivalent to more than / less than / at least / at most r of.

proved that more than 1/2 of does not possess any of the four +-× properties in both of

its arguments. For example, to prove that it is not multiplicative in the 2nd argument,

we can construct the following counterexample. Let z = {a, b, c}, x = {a, b}, y = {b,

c}. Then x ∧ y = {b}, and we have ǁmore than 1/2 ofǁ(z)(x) ∧ ǁmore than 1/2 ofǁ(z)(y)

true but ǁmore than 1/2 ofǁ(z)(x ∧ y) false. Similarly, one can show that more than 1/2

of does not possess any of the remaining three +-× properties in both of its arguments

by constructing counterexamples. In view of this, the inference in (2) cannot be

derived under C.

 In what follows, we will discuss some quantifiers that are non-monotonic in one

or more of its arguments. Given Propositions 1.7 and 1.8, these quantifiers do not

possess any of the +-× properties in respect of their non-monotonic argument. Yet it

can be shown that they satisfy certain types of exclusion inferences in respect of these

arguments.

 The first type includes proportional quantifiers such as exactly r of, between q

and r of, more than r or less than q of, etc. where q and r represent a fraction or

percentage. It can easily be shown that these quantifiers are non-monotonic in both of

their arguments. Yet these quantifiers satisfy different types of exclusion inferences

depending on the values of q and r. For example, it is easily seen that the following

inference is valid:

(3) Exactly 3/4 of the members are elderly ∆

Exactly 3/4 of the members are teenagers

 The second type includes exceptive quantifiers such as all ... except Smith, no

except Smith, etc9. It can be shown that these quantifiers are non-monotonic in both

arguments. Yet these quantifiers satisfy various types of exclusion inferences. For

example, the following inference involving all ... except Smith and the contradictory

concepts of male and female is valid:

(4) All male members except Smith are noisy ∆

All female members except Smith are noisy

Note that these two sentences cannot be both true because otherwise, according to the

meaning of “except”, “Smith” would be both male and female.

9 The truth conditions under GQT of these two exceptive quantifiers are (where s denotes Smith):

ǁall except ... Smithǁ(A)(B) is true iff A – B = {s}

ǁno except ... Smithǁ(A)(B) is true iff A ∩ B = {s}

 The third type includes the identity comparative quantifiers the same ... as ... and

different ... than ... studied in Beghelli (1994). These two quantifiers both have three

arguments10. It can be shown that these two quantifiers are both non-monotonic in the

2nd and 3rd arguments. Yet they satisfy various types of exclusion inferences in respect

of these two arguments. For example, the following inference involving the same ...

as ... and the contradictory concepts of asleep and awake11 is valid:

(5) (Given that there is some noisy member)

The same members are asleep as noisy ∆

The same members are awake as noisy

2. Projectivity Marking

2.1 Opposition Properties

 In the previous section, we have shown that the +-× properties are not

appropriate for studying exclusion reasoning. The main problem is that the definitions

of these properties are not directly related to the exclusion relations. We thus propose

to replace the +-× properties with the following properties studied in Chow (2012,

2017).

Definition 2.1: Let f: В → B’ be a function on Boolean algebras, x and y be

elements of B.

(i) f is homo-exclusive iff x ∆ y entails f(x) ∆ f(y).

(ii) f is homo-exhaustive iff x ∇ y entails f(x) ∇ f(y).

(iii) f is anti-exclusive iff x ∆ y entails f(x) ∇ f(y).

(iv) f is anti-exhaustive iff x ∇ y entails f(x) ∆ f(y).

(v) f is o(pposition)-sensitive iff f possesses at least one of the above properties; f is

o-insensitive iff f does not possess any of the above properties.

 Note that the definitions of the above properties are very similar to those in

Definition 1.5. Thus, following the nomenclature of this definition, the increasing

10

 The truth conditions under GQT of these two identity comparative quantifiers are:

ǁthe same ... asǁ(A)(B1)(B2) is true iff A ∩ B1 = A ∩ B2

ǁdifferent ... thanǁ(A)(B1)(B2) is true iff A ∩ B1 ≠ A ∩ B2
11 For the purpose of discussion in this paper, we assume that any person is either asleep or awake but
not both, and so treat asleep and awake as contradictory.

property may also be called “homo-subset” or “homo-superset” property, whereas the

decreasing property may also be called “anti-subset” or “anti-superset” property. To

distinguish the two sets of properties, the two properties in Definition 1.5 (i)-(ii) will

be collectively called “monotonicity properties” (MPs) while the four properties in

Definition 2.1 (i)-(iv) will be collectively called “opposition properties” (OPs). A list

of the MPs and OPs (in the form of projectivity signatures) of some important

functions is given in the Appendix. The results are extracted from Chow (2012,

2017)12.

 Unlike the +-× properties which are strengthening of the MPs, OPs are in a

parallel relation with the MPs. There are monotonic but o-insensitive functions (such

as the (absolute) numerical quantifier more than n), as well as o-sensitive but

non-monotonic functions (such as the proportional quantifier exactly r of in respect of

the 2nd argument where 1/2 < r < 1 or 0 < r < 1/2). Moreover, there can be various

possibilities of combinations among these properties. But not all combinations yield

meaningful results. In this subsection, we explore some possible combinations of

these properties.

 We first discuss combinations among MPs. We have the following proposition.

Proposition 2.2: A function is both increasing and decreasing iff it is constant.

Proof: Let f be a function. On the one hand, if f is constant, then f(x) ≤ f(y) for all x

and y. The definitions of the increasing and decreasing properties are thus trivially

satisfied. On the other hand, if f is both increasing and decreasing, then for all x and y,

x ≤ y entails both f(x) ≤ f(y) and f(x) ≥ f(y), i.e. f(x) ≡ f(y). Since for all x in a

Boolean algebra, we have 0 ≤ x ≤ 1, this entails f(0) ≡ f(x) ≡ f(1), i.e. f is constant. 

Thus, a quantifier that is both increasing and decreasing always gives the same truth

value for any input. Since these quantifiers are trivial and uninteresting, they are

excluded from consideration in this paper.

 We next discuss combinations among OPs, which have been studied in Chow

(2017). Here are some of the propositions adapted from Chow (2017)13.

12 In Chow (2012, 2017), the homo-exclusive, homo-exhaustive, anti-exclusive and anti-exhaustive

properties are denoted “CC→CC”, “SC→SC”, “CC→SC” and “SC→CC”, respectively.
13 Although the results in Chow (2017) are about generalized quantifiers, these results (together with
their proofs) can be readily extended to general functions on Boolean algebras.

Proposition 2.3: There is no function that is both homo-exclusive and

anti-exclusive. Neither is there function that is both

homo-exhaustive and anti-exhaustive.

From this proposition one can easily deduce that there is no function that possesses

three or four of the OPs.

Proposition 2.4: There are functions that are both homo-exclusive and

homo-exhaustive, as well as functions that are both

anti-exclusive and anti-exhaustive. Moreover, these two types of

functions must also be increasing and decreasing, respectively.

Examples of the first type of functions are the singular proper

names and the identity function, denoted ID. An example of the

second type of functions is the negative particle not.

Proposition 2.5: There are functions that are both homo-exclusive and

anti-exhaustive, as well as functions that are both

homo-exhaustive and anti-exclusive. Examples of the first type

of functions are the quantifiers all … except (in respect of both

arguments), no … except (in respect of both arguments), the

same … as … (in respect of the 2nd and 3rd arguments). An

example of the second type of functions is the quantifier

different … than … (in respect of the 2nd and 3rd arguments).

 We next discuss combinations between MPs and OPs. It has been shown in

Chow (2017) that there are functions that are both increasing and homo-exclusive

(such as every in the 2nd argument), both increasing and homo-exhaustive (such as

some in both arguments), both decreasing and anti-exclusive (such as not every in the

2nd argument), and both decreasing and anti-exhaustive (such as no in both

arguments).

 Moreover, according to Proposition 2.4, there are functions that are increasing,

homo-exclusive and homo-exhaustive. Note that these three properties are similar in

that they are all “homo” properties (recall that the increasing property can also be

called homo-subset or homo-superset property). There are also functions that are

decreasing, anti-exclusive and anti-exhaustive. Note that these three properties are all

“anti” properties (recall that the decreasing property can also be called anti-subset or

anti-superset property).

 While Proposition 2.5 shows that the “homo” and “anti” properties can be mixed

within OPs, the following proposition shows that the “homo” and “anti” properties

cannot be mixed across MPs and OPs.

Proposition 2.6: Let f be a function on Boolean algebras.

(i) f is both increasing and anti-exclusive iff f(x) ≡ 1 for all x.

(ii) f is both increasing and anti-exhaustive iff f(x) ≡ 0 for all x.

(iii) f is both decreasing and homo-exclusive iff f(x) ≡ 0 for all x.

(iv) f is both decreasing and homo-exhaustive iff f(x) ≡ 1 for all x.

Proof: We will only prove (i) and (ii). The proofs of (iii) and (iv) are similar.

(i) On the one hand, if f(x) ≡ 1 for all x, then f(x) ≤ f(y) and f(x) ∇ f(y) for all x and y.

The definitions of the increasing and anti-exclusive properties are thus trivially

satisfied. On the other hand, suppose f is both increasing and anti-exclusive and let x

be any element. Then since 0 ≤ x and 0 ∆ x, by the increasing and anti-exclusive

properties of f, we have f(0) ≤ f(x) and f(0) ∇ f(x) (i.e. ¬f(0) ≤ f(x)). Thus, we have

f(0) ∨ ¬f(0) ≤ f(x), which is equivalent to 1 ≤ f(x). This means that f(x) ≡ 1 for all x.

(ii) On the one hand, if f(x) ≡ 0 for all x, then f(x) ≤ f(y) and f(x) ∆ f(y) for all x and y.

The definitions of the increasing and anti-exhaustive properties are thus trivially

satisfied. On the other hand, suppose f is both increasing and anti-exhaustive and let x

be any element. Then since x ≤ 1 and x ∇ 1, by the increasing and anti-exhaustive

properties of f, we have f(x) ≤ f(1) and f(x) ∆ f(1) (i.e. f(x) ≤ ¬f(1)). Thus, we have

f(x) ≤ f(1) ∧ ¬f(1), which is equivalent to f(x) ≤ 0. This means that f(x) ≡ 0 for all x.



Thus, the four types of function with mixed properties discussed in Proposition 2.6

are trivial constant functions. For this reason, they are excluded from consideration in

this paper.

 Before closing this subsection, we will briefly discuss the relationship between

the OPs and the +-× properties. Similar to their relation with the MPs, the +-×

properties can also be seen as strengthening of the OPs, as shown in the following

proposition.

Proposition 2.7: Let f be a function on Boolean algebras.

(i) If f is completely additive, then it is homo-exhaustive.

(ii) If f is completely multiplicative, then it is homo-exclusive.

(iii) If f is completely anti-additive, then it is anti-exhaustive.

(iv) If f is completely anti-multiplicative, then it is anti-exclusive

Proof: We will only prove (i) and (iii). The proofs of (ii) and (iv) are similar.

(i) Let x and y be any two elements such that x ∇ y, i.e. x ∨ y ≡ 1. Then, since f is

completely additive, we have f(x) ∨ f(y) ≡ f(x ∨ y) ≡ f(1) ≡ 1, i.e. f(x) ∇ f(y). This

shows that f is homo-exhaustive.

(iii) Let x and y be any two elements such that x ∇ y, i.e. x ∨ y ≡ 1. Then, since f is

completely anti-additive, we have f(x) ∧ f(y) ≡ f(x ∨ y) ≡ f(1) ≡ 0, i.e. f(x) ∆ f(y). This

shows that f is anti-exhaustive. 

 Propositions 1.7, 1.8 and 2.7 show that each +-× property implies an MP and an

OP. For example, if a function is completely multiplicative, then it is increasing and

homo-exclusive. On the other hand, there is function that possesses an MP and an OP

but not any +-× property. For example, the quantifier more than 1/2 of is increasing

and homo-exclusive in the 2nd argument, but does not possess any +-× property. We

have thus shown that the +-× properties (complete version) are strengthening of the

MPs and OPs. Our conclusion is that the +-× properties are not the proper notions for

studying exclusion reasoning. They are so strong that they fail to include many

quantifiers that satisfy important types of exclusion inferences.

2.2 Projectivity Signatures

 The foregoing discussion suggests that we need 15 projectivity signatures to

denote (non-trivial) functions according to the MPs and OPs they possess: two for the

MPs, four for the OPs, eight for possible combinations of MPs and OPs, and one for

all functions. These projectivity signatures comprise a set which is denoted by Σ. We

will use a special symbolism for the members of this set, which is set out in the

following table. The idea of the symbols for the four OPs (i.e. the form (ρ1→ρ2)) is

borrowed from Chow (2012, 2017).

Definition 2.8

Signature Property

↑ increasing

↓ decreasing

(∆→∆) homo-exclusive

(∇→∇) homo-exhaustive

(∆→∇) anti-exclusive

(∇→∆) anti-exhaustive

(↑ ∧ ∆→∆) increasing and homo-exclusive

(↑ ∧ ∇→∇) increasing and homo-exhaustive

(↓ ∧ ∆→∇) decreasing and anti-exclusive

(↓ ∧ ∇→∆) decreasing and anti-exhaustive

(∆→∆ ∧ ∇→∆) homo-exclusive and anti-exhaustive

(∇→∇ ∧ ∆→∇) homo-exhaustive and anti-exclusive

(↑ ∧ ∆→∆ ∧ ∇→∇) increasing, homo-exclusive and homo-exhaustive

(↓ ∧ ∆→∇ ∧ ∇→∆) decreasing, anti-exclusive and anti-exhaustive

● general (applicable to any function)

 While some symbols above look cumbersome, they are in fact transparent and

self-explanatory. For example, the symbol ∇→∆ represents the property that yields

exclusive (∆) function values from exhaustive (∇) inputs, i.e. the anti-exhaustive

property. Theoretically speaking, the signatures for the MPs can also be written in the

form (ρ1→ρ2), where ρ1, ρ2 ∈ {≤, ≥}, i.e. (≤→≤) (or (≥→≥)) for the increasing

property, and (≤→≥) (or (≥→≤)) for the decreasing property. But since the symbols

are not unique (each property has two possible signatures), we decide to use ↑ and ↓

as the signatures of the MPs, as these two symbols are also commonly used in GQT.

 The first six signatures shown above are collectively called “basic signatures”

and are the building blocks of other signatures, which are collectively called

“complex signatures” (except ●). Like R, there is also a natural ordering among the

members of Σ, which is depicted by Fig. 2.

Fig. 2 Partial order of members of Σ

In Fig. 2, an arrow pointing from a signature ϕ1 to another signature ϕ2 means that ϕ2

represents a stronger property than ϕ1, i.e. for any function f, if f possesses the

property represented by ϕ2, then f also possesses the property represented by ϕ1. Fig. 2

can also be viewed as representing a partial order comprising the members of Σ. One

can now see that the symbol ∧ within some of the signatures in fact represents the

meet between some of the members of Σ.

 The form (ρ1→ρ2) opens up the possibility of defining properties other than those

studied in this paper. To keep the discussion of this paper manageable, we will not

explore all possibilities, but will state the following proposition which will be useful

below.

Proposition 2.9: Let f be a function on Boolean algebras.

(i) f has signature (≤→∆) or (≥→∆) iff f(x) ≡ 0 for all x.

(ii) f has signature (≤→∇) or (≥→∇) iff f(x) ≡ 1 for all x.

(iii) f has signature (∆→≤), (∆→≥), (∇→≤) or (∇→≥) iff f is constant.

Proof: We will only prove the first part of (i) and the last part of (iii). The proofs of

the remaining parts are similar.

(i) On the one hand, if f(x) ≡ 0 for all x, then f(x) ≤ ¬f(y) for all x and y. The

definition of the property represented by (≤→∆) is thus trivially satisfied. On the other

hand, if f has signature (≤→∆), then since x ≤ x, we have f(x) ∆ f(x) for all x. This is

true only if f(x) ≡ 0 for all x.

(iii) On the one hand, if f is constant, then f(x) ≥ f(y) for all x and y. The definition of

the property represented by (∇→≥) is thus trivially satisfied. On the other hand, if f

has signature (∇→≥), then since x ∇ 1 and 1 ∇ x for all x, we have f(x) ≥ f(1) and f(1)

≥ f(x), which is equivalent to f(x) ≡ f(1) for all x. Thus, f is constant. 

2.3 Projection

 An advantage of the signatures introduced above is that they greatly facilitate the

computations of projection and composition, which are two of the three necessary

computations in the Calculus to be introduced below (the third one is the JOIN

operation introduced in Subsection 1.2). We discuss projection in this subsection.

Here is the definition of projection (adapted from Icard (2012)).

Definition 2.10: Let ρ ∈ R and ϕ ∈ Σ. The projection of ρ under ϕ, denoted ϕ[ρ], is

the strongest member of R such that the following holds:

whenever x ρ y and f is a function with signature ϕ, then we have

f(x) ϕ[ρ] f(y).

 Writing some of the projectivity signatures in the form (ρ1→ρ2), where ρ1 and ρ2

is either ∆ or ∇, makes it easy to compute the projection of any ρ ∈ R under any of

these signatures. For example, we have (∇→∆)[∇] = ∆ because whenever x ∇ y and f

is an anti-exhaustive function (i.e. with signature (∇→∆)), then f(x) ∆ f(y). This is

precisely the definition of the anti-exhaustive property. Moreover, ∆ is the strongest

relation such that the aforesaid statement holds. To see this, in R there is only one

member stronger than ∆, namely ⊥, which is equal to ∆ ∧ ∇. If (∇→∆)[∇] were to be

equal to ⊥, it would be the case that whenever x ∇ y and f is an anti-exhaustive

function, then f(x) ⊥ f(y), i.e. f(x) ∆ f(y) and f(x) ∇ f(y). But this would mean that f is

both anti-exhaustive and homo-exhaustive, which is impossible according to

Proposition 2.3.

 Moreover, we also have (∇→∆)[∆] = #. To prove this, we have to show that

(∇→∆)[∆] is not equal to ≤, ≥, ∆ and ∇ (and so also not equal to ≡ and ⊥, leaving # as

the only possible result). We will prove (∇→∆)[∆] is not equal to ∇ and ≤. The

remaining parts of the proof are similar. Let f be a function that possesses the

anti-exhaustive property (i.e. with signature (∇→∆)). If (∇→∆)[∆] were to be equal to

∇, then according to Definition 2.10, whenever x ∆ y, we would have f(x) ∇ f(y). But

this is precisely the definition of the anti-exclusive property (i.e. with signature

(∆→∇)). This means that every anti-exhaustive function is anti-exclusive. But this is

incorrect because there is anti-exhaustive function that is not anti-exclusive, such as

the quantifier no. Thus, (∇→∆)[∆] ≠ ∇. Similarly, if (∇→∆)[∆] were to be equal to ≤,

then whenever x ∆ y, we would have f(x) ≤ f(y). But this is precisely the definition of

the property with signature (∆→≤). This means that every anti-exhaustive function is

(∆→≤). But this is incorrect because according to Proposition 2.9, functions with

signature (∆→≤) are constant, and there is certainly non-constant anti-exhaustive

function. Thus, (∇→∆)[∆] ≠ ≤.

 Using the same line of reasoning, we can compute other results of (ρ1→ρ2)[ρ3],

which are summarized as the following proposition.

Proposition 2.11: Let ρi (i = 1, 2, 3) be either ∆ or ∇. Then (ρ1→ρ2)[ρ1] = ρ2, and

(ρ1→ρ2)[ρ3] = # if ρ1 ≠ ρ3.

 For the signatures ↑ and ↓, we have the following results from GQT: ↑[≤] = ≤,

↑[≥] = ≥, ↓[≤] = ≥ and ↓[≥] = ≤. One can also show that ↑[ρ] = ↓[ρ] = # if ρ is either ∆

or ∇ by following the same line of reasoning as in the preceding paragraphs.

 To compute ϕ[≡] or ϕ[⊥], we first note that ≡ and ⊥ can be written as ρ1 ∧ ρ2. We

can then compute ϕ[ρ1] and ϕ[ρ2] separately and then combine the results. For

example, to compute ↓[≡], we reason as follows. Suppose x ≡ y. Then we have both x

≤ y and x ≥ y. Let f be a function with signature ↓. Then by Definition 2.10, we have

both f(x) ↓[≤] f(y) and f(x) ↓[≥] f(y), i.e. f(x) ≥ f(y) and f(x) ≤ f(y). But by Proposition

1.3, this is equivalent to f(x) (≥ ∧ ≤) f(y), i.e. f(x) ≡ f(y). Moreover, it is clear that ≡ is

the strongest relation such that the aforesaid statement holds. Thus, ↓[≡] = ≡.

 To compute (ϕ1 ∧ ϕ2)[ρ] where ϕ1 and ϕ2 are basic signatures, we can compute

ϕ1[ρ] and ϕ2[ρ] separately and then combine the results. For example, to compute

(∆→∆ ∧ ∇→∆)[∆], we reason as follows. Suppose x ∆ y. Let f be a function with

signature (∆→∆ ∧ ∇→∆). Then f has the properties represented by (∆→∆) and

(∇→∆). From the former and Definition 2.10, we have f(x) (∆→∆)[∆] f(y), i.e. f(x) ∆

f(y). From the latter and Definition 2.10, we have f(x) (∇→∆)[∆] f(y), i.e. f(x) # f(y).

By Proposition 1.3, we have f(x) (∆ ∧ #) f(y), i.e. f(x) ∆ f(y). Moreover, it is clear that

∆ is the strongest relation such that the aforesaid statement holds. Thus, (∆→∆ ∧

∇→∆)[∆] = ∆.

 In general, we have ϕ[ρ1 ∧ … ∧ ρn] = ϕ[ρ1] ∧ … ∧ ϕ[ρn] and (ϕ1 ∧ … ∧ ϕn)[ρ] =

ϕ1[ρ] ∧ … ∧ ϕn[ρ], where ρ, ρ1 … ρn are basic relations and ϕ, ϕ1 … ϕn are basic

signatures.

 Finally, it is easy to see that ϕ[#] = # for any ϕ ∈ Σ and ●[ρ] = # for any ρ ∈ R.

Moreover, one can show (by exhaustive checking say) that the results of all possible

projections are members of R and the results can be found by using the computation

method introduced above.

2.4 Composition

 We turn to composition in this subsection. Here is the definition (adapted from

Icard (2012)).

Definition 2.12: Let ϕ1, ϕ2 ∈ Σ. The composition of ϕ2 and ϕ1, denoted ϕ2 ◦ ϕ1, is

the strongest member of Σ such that the following holds: if f2 is a

function with signature ϕ2 and f1 is a function with signature ϕ1,

then f2 ◦ f1 is a function with signature ϕ2 ◦ ϕ1.

 Writing some of the projectivity signatures in the form (ρ1→ρ2), where ρ1 and ρ2

is either ∆ or ∇, makes it easy to compute the composition of these signatures. For

example, we have (∆→∇) ◦ (∇→∆) = (∇→∇). To prove this, we first note that if x ∇

y and f1 is a function with signature (∇→∆), then we have f1(x) ∆ f1(y). Viewing f1(x)

and f1(y) as inputs of the function f2 with signature (∆→∇), we have f2 ◦ f1(x) ∇ f2 ◦

f1(y). We next have to show that (∆→∇) ◦ (∇→∆) is not equal to (∇→∇ ∧ ∆→∇) and

(↑ ∧ ∆→∆ ∧ ∇→∇), which are the only two members in Σ stronger than (∇→∇).

Now suppose x ∆ y and f1 is a function with signature (∇→∆), then according to the

results of the previous subsection, we have f1(x) # f1(y). Next viewing f1(x) and f1(y)

as inputs of the function f2 with signature (∆→∇), we have f2 ◦ f1(x) # f2 ◦ f1(y). This

shows that (∆→∇) ◦ (∇→∆) cannot be equal to (∆→∇). Neither can it be equal to

(∇→∇ ∧ ∆→∇). The proof that (∆→∇) ◦ (∇→∆) ≠ (↑ ∧ ∆→∆ ∧ ∇→∇) is similar.

 Moreover, we also have (∆→∇) ◦ (∆→∇) = ●. To prove this, we have to show

that (∆→∇) ◦ (∆→∇) is not equal to ↑, ↓, (∆→∆), (∇→∇), (∆→∇) and (∇→∆) (and

so also not equal to the complex signatures, leaving ● as the only possible result). We

will prove (∆→∇) ◦ (∆→∇) is not equal to ↑. The remaining parts of the proof are

similar. Suppose x ≤ y or x ≥ y and f1 is a function with signature (∆→∇), then

according to the results of the previous subsection, in either case we have f1(x) # f1(y).

Next viewing f1(x) and f1(y) as inputs of the function f2 with signature (∆→∇), we

have f2 ◦ f1(x) # f2 ◦ f1(y). This shows that (∆→∇) ◦ (∆→∇) cannot be equal to ↑.

 Using the same line of reasoning, we can compute other results of (ρ3→ρ4) ◦

(ρ1→ρ2), which are summarized as the following proposition.

Proposition 2.13: Let ρi (i = 1, 2, 3, 4) be either ∆ or ∇. Then (ρ2→ρ3) ◦ (ρ1→ρ2) =

(ρ1→ρ3), and (ρ3→ρ4) ◦ (ρ1→ρ2) = ● if ρ2 ≠ ρ3.

 For the signatures ↑ and ↓, we have the following results from GQT: ↑ ◦ ↑ = ↑, ↑

◦ ↓ = ↓, ↓ ◦ ↑ = ↓ and ↓ ◦ ↓ = ↑. One can also show that ↑ ◦ (ρ1→ρ2) = ↓ ◦ (ρ1→ρ2) =

(ρ1→ρ2) ◦ ↑ = (ρ1→ρ2) ◦ ↓ = ● if ρ1, ρ2 is either ∆ or ∇ by following the same line of

reasoning as above.

 To compute (ϕ2 ∧ ϕ3) ◦ ϕ1 where ϕ1, ϕ2, ϕ3 are basic signatures, we can compute

ϕ2 ◦ ϕ1 and ϕ3 ◦ ϕ1 separately and then combine the results. For example, to compute

(∇→∇ ∧ ∆→∇) ◦ (∆→∆), we reason as follows. Suppose x ∆ y and let f1 be a

function with signature (∆→∆). Then we have f1(x) ∆ f1(y). Next, view f1(x) and f1(y)

as inputs of the function f2 with signature (∇→∇ ∧ ∆→∇), Then f2 has the properties

represented by (∇→∇) and (∆→∇). From the former, we have f2 ◦ f1(x) # f2 ◦ f1(y).

From the latter, we have f2 ◦ f1(x) ∇ f2 ◦ f1(y). By Proposition 1.3, we have f2 ◦ f1(x) (#

∧ ∇) f2 ◦ f1(y), i.e. f2 ◦ f1(x) ∇ f2 ◦ f1(y). Moreover, it is clear that ∇ is the strongest

relation between f2 ◦ f1(x) and f2 ◦ f1(y) by assuming the ∆ relation between x and y,

and all other relations assumed between x and y will only yield the # relation between

f2 ◦ f1(x) and f2 ◦ f1(y). Thus, (∇→∇ ∧ ∆→∇) ◦ (∆→∆) = (∆→∇).

 In general, we have (ϕ1 ∧ … ∧ ϕn) ◦ (ψ1 ∧ … ∧ ψm) = (ϕ1 ◦ ψ1) ∧ … ∧ (ϕ1 ◦ ψm)

∧ … ∧ (ϕn ◦ ψ1) ∧ … ∧ (ϕn ◦ ψm) where ϕ1 … ϕn, ψ1 … ψm are basic signatures.

 Finally, it is easy to see that ● ◦ ϕ = ϕ ◦ ● = ● for any ϕ ∈ Σ. Moreover, one can

show (by exhaustive checking say) that the results of all possible compositions are

members of Σ and the results can be found by using the computation method

introduced above.

2.5 Sufficient Conditions for Valid Inferences14

 In the foregoing, to avoid complicating the discussion, we have put aside the

issue that a particular MP/OP of a quantifier may be associated with certain condition.

Note that in Definitions 1.5 and 2.1, x ρ1 y can be seen as (inherent) conditions of the

14 The previous version of this paper did not discuss (sufficient) conditions associated with inclusion /
exclusion reasoning. I am grateful to an anonymous reviewer for pointing out the need for clarifying
these conditions. Without the reviewer’s advice, this paper would not have included this subsection.

inferences f(x) ρ2 f(y) (where ρ1, ρ2 are one of ≤ , ≥ , ∆ and ∇). In the simplest case,

this condition is a sufficient condition, i.e. whenever the condition holds, the inference

pattern in question is valid. In case the condition does not hold, there is no guarantee

for the validity of the inference pattern, i.e. there exist models in which the condition

does not hold and the inference pattern is invalid. For example, B ≤ B’ is a sufficient

condition for the inference pattern ǁeveryǁ(A)(B) ≤ ǁeveryǁ(A)(B’). In case B is not a

subset of B’, there is no guarantee for the validity of the aforesaid inference pattern,

i.e. there exist models in which B is not a subset of B’ and it is not the case that

ǁeveryǁ(A)(B) ≤ ǁeveryǁ(A)(B’).

 But for certain quantifiers, the inherent conditions are not sufficient to guarantee

the validity of some inferences involving MPs/OPs, and we need some additional

conditions. What we discuss in this subsection are these additional conditions15. Chow

(2012, 2017) has identified the additional conditions associated with the OPs of a

number of quantifiers. The additional condition and the inherent condition together

serve as sufficient conditions for the inference pattern in question, i.e. whenever the

additional condition and the inherent condition hold, the inference pattern is valid. In

case either of these conditions does not hold, there is no guarantee for the validity of

the inference pattern, i.e. there exist models in which either of these conditions does

not hold and the inference pattern is invalid.

 For illustration, all … except Smith is ∇→∆ in the 1st argument if B ∪ {s} ≠ Ư

(where B, s and Ư denote the 2nd argument of the quantifier, the individual “Smith”

and the universe, respectively). In case B ∪ {s} = Ư, there is no guarantee for the

validity of the aforesaid inference pattern, i.e. there exist models in which A ∇ A’, B

∪ {s} = Ư and it is not the case that ǁall … except Smithǁ(A)(B) ∆ ǁall … except

Smithǁ(A’)(B). For example, in a universe composed of “members” in which “Smith”

is a male member and all members except “Smith” are asleep, i.e. ǁasleepǁ ∪ {s} = Ư,

even though member ∇ male member, the following inference is invalid:

(6) All members except Smith are asleep ∆

All male members except Smith are asleep

 Instead of providing the proofs of the sufficiency of all additional conditions

associated with the quantifiers discussed in this paper, which will be lengthy and blur

15 These conditions are not parts of the projectivity signatures but are additional information specified
in the lexicon (the Appendix to this paper can be seen as a part of this lexicon). Therefore, the
discussion in this subsection should be seen as a justification of the conditions specified in the
Appendix rather than part of the calculus to be introduced in the next section.

the focus of this paper, here we will only provide the sufficiency proofs of two

particular cases as an illustration. The proofs of the other cases follow the same line of

reasoning. Note that three types of quantifiers given at the Appendix are associated

with additional conditions. They are the classical quantifiers, exceptive quantifiers

and identity comparative quantifiers. The additional conditions associated with the

classical quantifiers are easy to derive and prove, and so we will only discuss the

other two types of quantifiers.

 First, we prove that the exceptive quantifier all … except Smith is ∇→∆ in the 1st

argument if B ∪ {s} ≠ Ư. Suppose that the condition holds and A ∇ A’. By way of

contradiction, assume that ǁall … except Smithǁ(A)(B) and ǁall … except Smithǁ(A’)(B)

are both true. Then A – B = {s} and A’ – B = {s}, i.e. A – {s} ⊆ B and A’ – {s} ⊆ B.

We thus have (A – {s}) ∪ (A’ – {s}) ⊆ B, i.e. (A ∪ A’) – {s} ⊆ B. Since A ∇ A’, this

implies Ư – {s} ⊆ B. But this contradicts the condition that B ∪ {s} ≠ Ư.

 We next prove that the identity comparative quantifier the same … as … is ∆→∆

in the second argument if A ∩ B2 ≠ ∅ where A, B1 and B2 represent the 1st, 2nd and 3rd

arguments of the same … as …, respectively. Suppose that the condition holds and B1

∆ B1’. By way of contradiction, assume that ǁthe same … as …ǁ(A)(B1)(B2) and ǁthe

same … as …ǁ(A)(B1’)(B2) are both true. Then A ∩ B1 = A ∩ B2 and A ∩ B1’ = A ∩

B2. This implies A ∩ B1 = A ∩ B1’. Since B1 ∆ B1’, we have (A ∩ B1) ∩ (A ∩ B1’) =

∅. But since A ∩ B1 = A ∩ B1’, we must have A ∩ B1 = A ∩ B1’ = ∅. This implies A

∩ B2 = ∅. But this contradicts the condition that A ∩ B2 ≠ ∅.

 In the above, we have discussed additional conditions associated with

inclusion/exclusion inferences between sentences. For example, the quantifier no is

∇→∆ in the 1st argument given the condition that its second argument does not denote

the empty set. One should then be able to derive the following:

(7) (Given that some member died)

No male members died ∆ No female members died

In the above, we are using ǁmale membersǁ ∇ ǁfemale membersǁ in a (sub-)universe

composed of “members” and ǁdiedǁ ≠ ∅.

 But inclusion/exclusion inferences also exist between predicates. In the above

example, if we replace “died” by “admits” and suitably change the word order, then

“admits no male members” and “admits no female members” are predicates (instead

of sentences) which can be represented in set form by {x1: no(ǁmale membersǁ)({x2:

(x1, x2) ∈ ǁadmitǁ})} and {x1: no(ǁfemale membersǁ)({x2: (x1, x2) ∈ ǁadmitǁ})},

respectively. Note that in this paper we follow the practice of some GQT scholars,

such as Keenan and Westerståhl (2011), in treating generalized quantifiers

corresponding to full noun phrases as “arity reducers”, i.e. functions that, when

applied to an n-ary predicate, will yield an (n – 1)-predicate. Thus, when no(ǁmale

membersǁ) is applied to the unary predicate ǁdiedǁ, it yields a proposition (a

proposition can be seen as a 0-ary predicate). When applied to the binary predicate

ǁadmitǁ, it yields the unary predicate {x1: no(ǁmale membersǁ)({x2: (x1, x2) ∈

ǁadmitǁ})}16.

 By analogy with the above example, the two predicates {x1: no(ǁmale

membersǁ)({x2: (x1, x2) ∈ ǁadmitǁ})} and {x1: no(ǁfemale membersǁ)({x2: (x1, x2) ∈

ǁadmitǁ})} should also satisfy the ∆ relation given certain condition. Since {x2: (x1, x2)

∈ ǁadmitǁ} plays a similar role to ǁdiedǁ in the above example, this condition should be

something like {x2: (x1, x2) ∈ ǁadmitǁ} ≠ ∅. But here x1 is an unbound variable which

needs to be bound by a quantifier. What quantifier is this? It turns out that ∀x1.{x2:

(x1, x2) ∈ ǁadmitǁ} ≠ ∅ would be a suitable condition. This is because under this

condition, for every particular x1, we have {x2: (x1, x2) ∈ ǁadmitǁ} ≠ ∅. Then, we must

have no(ǁmale membersǁ)({x2: (x1, x2) ∈ ǁadmitǁ}) ∆ no(ǁfemale membersǁ)({x2: (x1,

x2) ∈ ǁadmitǁ}) (note that when x1 is a particular constant, {x2: (x1, x2) ∈ ǁadmitǁ} is

just a unary predicate like ǁdiedǁ in the above example). This means that for every x1,

x1 cannot be both a member of {x1: no(ǁmale membersǁ)({x2: (x1, x2) ∈ ǁadmitǁ})} and

a member of {x1: no(ǁfemale membersǁ)({x2: (x1, x2) ∈ ǁadmitǁ})}. Thus, the two

predicates are represented by disjoint sets and so satisfy the ∆ relation. Summarizing

the above discussion, we have the following inference (for convenience, in what

follows we assume a universe with “clubs” and “members” as sub-universes):

(8) (Given that every club admits some member)

admits no male members ∆ admits no female members

 The above example shows a ∆ relation between two predicates. We next discuss

a ∇ relation between two predicates. Consider the predicates “admits some male

member” and “admits some female member” which can be represented by {x1:

some(ǁmale memberǁ)({x2: (x1, x2) ∈ ǁadmitǁ})} and {x1: some(ǁfemale memberǁ)({x2:

(x1, x2) ∈ ǁadmitǁ})}, respectively. Similar to the above example, it can be shown that

16 Here we have adapted definitions (86) and (88) in Keenan and Westerståhl (2011): let Q be an arity

reducer and B an n-ary predicate, then Q(B) = {(x1, ... xn–1): Q({xn: (x1, ... xn) ∈ B})}.

these two predicates satisfy the ∇ relation given the condition ∀x1.{x2: (x1, x2) ∈

ǁadmitǁ} ≠ ∅. This is because under this condition, for every particular x1, we have

{x2: (x1, x2) ∈ ǁadmitǁ} ≠ ∅. Then, we must have some(ǁmale memberǁ)({x2: (x1, x2) ∈

ǁadmitǁ}) ∇ some(ǁfemale memberǁ)({x2: (x1, x2) ∈ ǁadmitǁ}), because some is ∇→∇

in the 1st argument given the condition that its second argument does not denote the

empty set. This means that for every x1, x1 must be either a member of {x1:

some(ǁmale memberǁ)({x2: (x1, x2) ∈ ǁadmitǁ})} or a member of {x1: some(ǁfemale

memberǁ)({x2: (x1, x2) ∈ ǁadmitǁ})}. Thus, the two predicates are represented by sets

whose union covers the sub-universe of “clubs” and so satisfy the ∇ relation.

Summarizing the above discussion, we have the following inference:

(9) (Given that every club admits some member)

admits some male member ∇ admits some female member

 The above discussion can be generalized to the case when the arity reducer is

applied to an n-ary predicate, where n ≥ 1. For example, let B be an n-ary predicate.

Then, no(ǁmale membersǁ) applied to B yields the (n – 1)-ary predicate {(x1, ... xn–1):

no(ǁmale membersǁ)({xn: (x1, ... xn) ∈ B})}, and by generalizing the above cases, it

can easily be seen that we must have {(x1, ... xn–1): no(ǁmale membersǁ)({xn: (x1, ... xn)

∈ B})} ∆ {(x1, ... xn–1): no(ǁfemale membersǁ)({xn: (x1, ... xn) ∈ B})} given the

condition ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} ≠ ∅. The conditions associated with other

quantifiers can be generalized in a similar fashion and these are summarized in the

Appendix.

 Before leaving this subsection, we have to point out that the conditions discussed

in this paper are different from the presuppositions associated with some quantifiers.

Presuppositions are assumptions taken for granted by the speaker. A sentence with

presupposition failure will have no truth value instead of being false. For example,

since the proper name “Smith” presupposes that “Smith exists”, {s} ≠ ∅ should be

treated as a presupposition associated with the Montagovian individual17 Smith as

well as the exceptive quantifiers all ... except Smith and no ... except Smith. Similarly,

since the truth condition of the proportional quantifier at least r of, i.e. ǁat least r

ofǁ(A)(B) is true iff |A ∩ B| / |A| ≥ r, involves division by |A|, this quantifier has no

truth value if A = ∅, and so A ≠ ∅ should be treated as a presupposition associated

with this quantifier. Since presuppositions are not related to the inference patterns of

quantifiers, they will not be further discussed in this paper and will not be included in

17 In GQT, a proper name can be seen as a generalized quantifier. Such quantifiers are called
“Montagovian individuals” in Peters & Westerståhl (2006).

the Appendix.

3. A Revised Projectivity Calculus

3.1 Basic Framework

 Having defined the projectivity signatures and the associated operations, we now

propose a Revised Projectivity Calculus that is denoted “RC”. Since RC will inherit

the key features of C with necessary amendments to cater for the new properties and

signatures introduced in this paper, we will not repeat all the details contained in Icard

(2012), but will focus on those features that are different from C as well as those

features that are necessary for the propositions and worked examples to be discussed

below.

 The set of types T under RC is generated from a basic type n representing nouns

and a type vi representing verbs with i arguments. We also adopt the convention of

using v0 to represent the type of truth values. Moreover, to cater for words with

polymorphic types such as not, we will use the symbol τ to represent the general type.

 We assume that T contains all relevant functional types whose symbols are

marked with projectivity signatures, such as)(1

)()(

−
∆→∇∧∆→∆∆→∇∧∆→∆  → → ii vvn ,

which is the type of the quantifier all … except Smith. This symbol contains the

information that all … except Smith has signature (∆→∆ ∧ ∇→∆) both in its 1st

argument, which has type n, and its 2nd argument, which has type vi, and its output has

type vi–1. This shows that all … except Smith, after being applied to an argument of

type n such as boys, is an arity reducer because all … except Smith(boys) turns an

argument of type vi to an output of type vi–1.

 The language L of RC comprises basic terms such as constants and variables as

well as terms that are formed by function application. In what follows, a term t with

its type τ will be denoted t : τ. We also assume that L has the usual semantics with the

usual definitions of notions such as models, domains, interpretation function, etc.

Specifically, each type τ corresponds to a domain that is denoted D(τ), while the

interpretation function is denoted as ǁ ǁ such that if t is a constant term, then ǁtǁ ∈ D(τ);

and if t has the form s(u), then ǁs(u)ǁ = ǁsǁ(ǁuǁ).

3.2 Ground Terms and Contexts

 RC inherits from C the notions of ground terms and contexts. The former are

terms that contain no variables, while the latter are terms that contain exactly one

variable. A context can be seen as a function. In fact, each context can be associated

with a function as defined below (adapted from Icard (2012)).

Definition 3.1: Let t : τ2 be a context with a variable x : τ1. Then we define a

function F[t] from D(τ1) to D(τ2) inductively as follows:

(i) If t = x, then F[x] = ID, the identity function;

(ii) If t = s(u) and x is a sub-term of s, then F[s(u)] = λz.F[s](z)(ǁuǁ) for z ∈ D(τ1);

(iii) If t = s(u) and x is a sub-term of u, then F[s(u)] = ǁsǁ ◦ F[u].

 For illustration, suppose we replace “male” in “All male members except Smith

are noisy” by a variable x. We then obtain the following context18:

(10) all … except Smith(x(members))(are noisy)

We next compute as follows:

(11) F[all … except Smith(x(members))(are noisy)]

 = λz.F[all … except Smith(x(members))](z)(ǁare noisyǁ)

 = λz.ǁall … except Smithǁ ◦ F[x(members)](z)(ǁare noisyǁ)

 = λz.ǁall … except Smithǁ ◦ λw.F[x](w)(ǁmembersǁ) (z)(ǁare noisyǁ)

 = λz.ǁall … except Smithǁ ◦ λw.w(ǁmembersǁ) (z)(ǁare noisyǁ)

 = λz.ǁall … except Smithǁ ◦ z(ǁmembersǁ)(ǁare noisyǁ)

 = λz.z(ǁmembersǁ) – ǁare noisyǁ = {s}

The above result gives a correct representation of “All x members except Smith are

noisy”.

 The purpose of defining F(t) is not so much to provide a representation of

contexts as to help prove the soundness of projectivity marking. To this end, we first

need the following definitions (adapted from Icard (2012)).

Definition 3.2: Let t be a term. The topmost projectivity of t, denoted Top[t], is

defined as follows.

18 To simplify matters, we treat “are noisy” as a unit.

(i) If t is of basic type, then Top[t] = (↑ ∧ ∆→∆ ∧ ∇→∇).

(ii) If t is of functional type 21 ττ φ→ where ϕ ∈ Σ, then Top[t] = ϕ.

Definition 3.3: Let t be a context with a variable x. The projectivity of t, denoted

Pro[t], is defined inductively as follows:

(i) If t = x, then Pro[x] = (↑ ∧ ∆→∆ ∧ ∇→∇);

(ii) If t = s(u) and x is a sub-term of s, then Pro[s(u)] = Pro[s];

(iii) If t = s(u) and x is a sub-term of u, then Pro[s(u)] = Top[s] ◦ Pro[u].

 For illustration, the projectivity of the context in (10) can be computed according

to the above definitions as follows:

(12) Pro[all … except Smith(x(members))(are noisy)]

 = Pro[all … except Smith(x(members))]

 = Top[all … except Smith] ◦ Pro[x(members)]

 = Top[all … except Smith] ◦ Pro[x]

 = (∆→∆ ∧ ∇→∆) ◦ (↑ ∧ ∆→∆ ∧ ∇→∇)

 = (∆→∆ ∧ ∇→∆)

 The following proposition links up F[t] and Pro[t] and establishes the soundness

of projectivity marking (the basic idea of the proof is from Icard (2012) with essential

modifications).

Proposition 3.4: Given a context t with a variable x, if Pro[t] = ϕ, then F[t] is a

function with signature ϕ.

Proof: We prove by induction on the structural complexity of t. If t = x, then since

F[x] = ID, it has signature (↑ ∧ ∆→∆ ∧ ∇→∇) according to the Appendix, which is

equal to Pro[x].

Next suppose t = s(u). We hypothesize that the proposition is true for s and u. Now

there are two cases to consider. In the first case, x is a sub-term of s, then Pro[s(u)] =

Pro[s]. We have to show that F[s(u)] is a function with signature Pro[s] for each

possible Pro[s]. Here we will only prove the case where Pro[s] = (∇→∆), as the

proofs of other basic cases are similar. By the induction hypothesis, F[s] is a function

with signature Pro[s], i.e. (∇→∆). This means if x ∇ y, then F[s](x) ∆ F[s](y), or

equivalently F[s](x) ∧ F[s](y) = 0. Based on this fact, we compute F[s(u)](x) ∧

F[s(u)](y) = (λz.F[s](z)(ǁuǁ))(x) ∧ (λz.F[s](z)(ǁuǁ))(y) = F[s](x)(ǁuǁ) ∧ F[s](y)(ǁuǁ) =

(F[s](x) ∧ F[s](y))(ǁuǁ) = 0(ǁuǁ) = 0, i.e. F[s(u)](x) ∆ F[s(u)](y). We have thus shown

that F[s(u)] has signature (∇→∆), which is equal to Pro[s(u)]. If Pro[s] is equal to a

complex signature, the only complication is that we have to consider separate cases

but the basic reasoning is the same.

In the second case, x is a sub-term of u, then Pro[s(u)] = Top[s] ◦ Pro[u]. Suppose u

has type τ1. Then s must have type 21
1 ττ φ→ for some ϕ1 ∈ Σ, or in other words,

ǁsǁ has signature ϕ1. By Definition 3.2, Top[s] = ϕ1. If Pro[u] = ϕ2, then by the

induction hypothesis, F[u] is a function with signature ϕ2. By Definition 2.12, we thus

conclude that F[s(u)] = ǁsǁ ◦ F[u] is a function with signature ϕ1 ◦ ϕ2, which is equal to

Top[s] ◦ Pro[u], i.e. Pro[s(u)]. 

3.3 Inference Rules

 We finally come to the inference rules of RC. Instead of repeating all the rules

given in Icard (2012), here we will only focus on two rules that will appear in the

worked examples below.

 The first is the JOIN Rule19.

JOIN:
t1 ρ1 t2 t2 ρ2 t3

t1 (ρ1 JOIN ρ2) t3

The soundness of this rule is guaranteed by Definition 1.4 and Table 1.

 The second is the Substitution Rule. Before stating this rule, we need to define

one more notation (adapted from Icard (2012) and Moss (2012)).

Definition 3.5: Let t1 be a ground term, s1 be a sub-term of t1, and s2 and x be

respectively a ground term and a variable of the same type as s1.

Then t1(s2←s1) represents the ground term obtained from t1 by

substituting s2 for s1, whereas t1(x←s1) represents the context

obtained from t1 by substituting x for s1.

According to Definition 3.1, a context t2 with a variable x is associated with a function

F[t2], which can be applied to any term of the same type as x. Now Moss (2012) has

19 Icard (2012) called this the “Composition” Rule. To avoid confusing this rule with the composition
of signatures introduced in subsection 2.4 above, we prefer to call this the JOIN Rule.

proved the following proposition20.

Proposition 3.6: Let t2 be a context with a variable x, and s be a ground term of

the same type as x. Then F[t2](ǁsǁ) = ǁt2(s←x)ǁ.

 By Definition 3.5, we can obtain a context from a ground term by introducing a

variable. By Proposition 3.6, we can get back a ground term by applying the context

to a ground term of the same type as the variable. Thus, if t1 is a ground term and x is

a variable, we have the following relations: F[t1(x←s1)](ǁs1ǁ) = ǁt1(x←s1)(s1←x)ǁ = ǁt1ǁ

and F[t1(x←s1)](ǁs2ǁ) = ǁt1(x←s1)(s2←x)ǁ = ǁt1(s2←s1)ǁ. These two relations will be

useful in the proof of the following proposition.

 The following proposition links up the notions of context projectivity and the

projection operation of signatures (adapted from Icard (2012). Note that Icard (2012)

did not provide the proof).

Proposition 3.7: Let t be a ground term, s1 be a sub-term of t, and s2 and x be

respectively a ground term and a variable of the same type as s1.

If Pro[t(x←s1)] = ϕ and ǁs1ǁ ρ ǁs2ǁ, then ǁtǁ ϕ[ρ] ǁt(s2←s1)ǁ.

Proof: By Proposition 3.4, if Pro[t(x←s1)] = ϕ, then F[t(x←s1)] is a function with

signature ϕ. Now if ǁs1ǁ ρ ǁs2ǁ, then by Definition 2.10, we have F[t(x←s1)](ǁs1ǁ) ϕ[ρ]

F[t(x←s1)](ǁs2ǁ). But it has been shown in the previous paragraph that F[t(x←s1)](ǁs1ǁ)

= ǁtǁ and F[t(x←s1)](ǁs2ǁ) = ǁt(s2←s1)ǁ. We thus have ǁtǁ ϕ[ρ] ǁt(s2←s1)ǁ. 

 We thus have the following rule.

Substitution:
s1 ρ s2

Pro[t(x←s1)] = ϕ
t ϕ[ρ] t(s2←s1)

The soundness of this rule is guaranteed by Proposition 3.7.

3.4 Worked Examples

 In this subsection, we illustrate how RC works by deriving several inclusion and

exclusion inferences. First we provide a list of the ground terms and their types that

will be used in the examples. To simplify matters, some phrases below are treated as

20 Note that in Moss (2012), t2(x←s) means the same thing as t2(s←x) in this paper.

whole units.

Table 2 Some Ground Terms and their Types

Ground Term Type

elderly, teenagers, clubs, members n

are noisy v1

admit v2

male, female nn  → ∇→∇∧∆→∆∧↑)(

not ττ  → ∆→∇∧→∇∆∧↓)(

every / all)(1

)()(

−
∆→∆∧↑∆→∇∧↓  → → ii vvn

some)(1

)()(

−
∇→∇∧↑∇→∇∧↑  → → ii vvn

no)(1

)()(

−
∆→∇∧↓∆→∇∧↓  → → ii vvn

more than 1/2 of)(1

)(

−
∆→∆∧↑  →→ ii vvn

less than 1/2 of)(1

)(

−
∆→∇∧↓  →→ ii vvn

at most 1/2 of)(1

)(

−
→∇∆∧↓  →→ ii vvn

all … except Smith)(1

)()(

−
∆→∇∧∆→∆∆→∇∧∆→∆  → → ii vvn

 In what follows, we will also determine the additional conditions for valid

inferences (if any). But since these conditions are not parts of the projectivity

signatures, their determination will be a separate process.

 We also have the following set of premises as the basis of inferences:

(i) elderly ∆ teenagers

(ii) male ⊥ female

(iii) no ⊥ some

(iv) more than 1/2 of ⊥ at most 1/2 of

(v) more than 1/2 of ∆ less than 1/2 of

From this we can already make some simple inferences involving phrases, such as:

elderly ∆ teenagers

not(elderly) ∇ not(teenagers)

 To derive more complicated inferences, we need to make use of the Substitution

Rule. For example, suppose we wish to derive the inference given in (4), reproduced

below:

(4) All male members except Smith are noisy ∆

All female members except Smith are noisy

We first let t be the ground term representing “All male members except Smith are

noisy”. This ground term can be represented in the following form which can be

derived from the terms given in Table 2:

(13) all … except Smith(male(members))(are noisy)

Then t(x←male) is equal to (10) above and t(female←male) is equal to the ground

term representing “All female members except Smith are noisy”. In (12), we have

already computed Pro[t(x←male)] = (∆→∆ ∧ ∇→∆). Since (∆→∆ ∧ ∇→∆)[⊥] = ∆,

we can invoke the Substitution Rule to obtain:

male ⊥ female
Pro[t(x←male)] = (∆→∆ ∧ ∇→∆)

t ∆ t(female←male)

The conclusion t ∆ t(female←male) above is precisely the inference in (4). According

to the Appendix, the 1st argument of all … except Smith is ∆→∆ without any

condition. Since ∆ can be seen as a component of the composite relation ⊥

(remember that ⊥ = ∆ ∧ ∇), this inference is valid without any additional condition.

 We next derive the following inference that is more complicated and instructive:

(14) (Given that every club admits some member)

More than 1/2 of the clubs admit no male members ≤

More than 1/2 of the clubs admit some female members

To derive this inference, we have to proceed in two stages at different levels of the

sentence. But before doing this, we first let t1 be the ground term representing “More

than 1/2 of the clubs admit no male members”, which can be represented in the

following form:

(15) more than 1/2 of(clubs)(no(male(members))(admit))

The above expression can be derived according to the types of terms given in Table 2.

Note that in this expression we treat more than 1/2 of as of type

)(0

)(

1 vvn  →→ ∆→∆∧↑ and no as of type)(1

)(

2

)(
vvn  → → ∆→∇∧↓∆→∇∧↓ .

 In the first stage, we focus on the phrase “admit no male members” which,

according to (15), may be represented by the ground term t2 =

no(male(members))(admit), from which we can obtain the context t2(x←male) =

no(x(members))(admit). By Definition 3.3, the projectivity of this context is

Pro[t2(x←male)] = Top[no] ◦ Pro[x] = (↓ ∧ ∇→∆) ◦ (↑ ∧ ∆→∆ ∧ ∇→∇) = (↓ ∧

∇→∆). Since (↓ ∧ ∇→∆)[⊥] = ∆, we can invoke the Substitution Rule to obtain:

male ⊥ female
Pro[t2(x←male)] = (↓ ∧ ∇→∆)

t2 ∆ t2(female←male)

Writing t3 = t2(female←male) = no(female(members))(admit), we next obtain the

context t3(x←no) = x(female(members))(admit). By Definition 3.3, the projectivity of

this context is Pro[t3(x←no)] = Pro[x] = (↑ ∧ ∆→∆ ∧ ∇→∇). Since (↑ ∧ ∆→∆ ∧

∇→∇)[⊥] = ⊥, we can invoke the Substitution Rule to obtain:

no ⊥ some
Pro[t3(x←no)] = (↑ ∧ ∆→∆ ∧ ∇→∇)

t3 ⊥ t3(some←no)

 Writing t4 = t3(some←no) = some(female(members))(admit), since ∆ JOIN ⊥ = ≤

according to Table 1, we can obtain the following result by invoking the JOIN Rule:

t2 ∆ t3 t3 ⊥ t4

t2 ≤ t4

 We next derive the condition for the validity of the above inference. As discussed

in Subsection 2.5 for (8), we know that the two predicates t2 =

no(male(members))(admit) and t3 = no(female(members))(admit) satisfy the ∆ relation

given the condition that every club admits some member (assuming a universe

composed of “clubs”). Now t3 ⊥ t4 is not associated with any additional condition, and

so t2 ≤ t4 inherits the condition associated with t2 ∆ t3. Thus, we obtain the following

inference at the phrase level:

(16) (Given that every club admits some member)

admit no male members ≤ admit some female members

 In the second stage, we work on t1, from which we can obtain the context

t1(x←t2) = more than 1/2 of(clubs)(x). By Definition 3.3, the projectivity of this

context is Pro[t1(x←t2)] = Top[more than 1/2 of(clubs)] ◦ Pro[x] = (↑ ∧ ∆→∆) ◦ (↑ ∧

∆→∆ ∧ ∇→∇) = (↑ ∧ ∆→∆). Since (↑ ∧ ∆→∆)[≤] = ≤, we can invoke the

Substitution Rule to obtain:

t2 ≤ t4
Pro[t1(x←t2)] = (↑ ∧ ∆→∆)

t1 ≤ t1(t4←t2)

Since t1(t4←t2) = more than 1/2 of(clubs)(some(female(members))(admit)), we obtain

more than 1/2 of(clubs)(no(male(members))(admit)) ≤ more than 1/2

of(clubs)(some(female(members))(admit)). According to the Appendix, more than 1/2

of is not associated with any additional condition. Thus, the above inference inherits

the condition that every club admits some member obtained in the first stage, and so

we finally obtain our desired inference in (14).

 Note that if the inference rules are used in a different order, one may not be able

to yield the same desired result. For example, to derive (14) discussed above, it is

necessary to use the JOIN Rule at the first stage before the final use of the

Substitution Rule at the second stage. In brief, if we only use the Substiution Rule

without using the JOIN Rule in the first stage, we will derive the following inference

between two phrases (which is the same as (8)):

(17) (Given that every club admits some member)

admit no male members ∆ admit no female members

If we then use the Substitution Rule to be followed by the JOIN Rule (using the

relation more than 1/2 of ⊥ at most 1/2 of) in the second stage, we will finally derive

the following inference at the sentence level (which is weaker than the one in (14)):

(18) (Given that every club admits some member)

More than 1/2 of the clubs admit no male members ≤

At most 1/2 of the clubs admit no female members

This shows that when using RC to derive inferences, one needs to make smart choices

of the use of rules.

3.5 Some Properties of RC

 Being a revised version of C, can RC derive all inferences involving the classical

quantifiers and the two basic functions ID and not that are derivable under C? Here I

only consider inferences involving the classical quantifiers because as shown above,

among the quantifiers that are usually studied under GQT, only the classical

quantifiers possess the +-× properties. Note that the definitions of the +-× properties

are related to inferences involving the join and meet operations in a Boolean algebra.

For instance, as some is additive in the 2nd argument, we have the following valid

inference:

(19) Somebody is singing or dancing ≡

Somebody is singing or somebody is dancing

However, C does not deal with such kinds of inferences. In other words, C does not

give full play to the potential inferences that the classical quantifiers may have by

virtue of their +-× properties, but instead only deals with inferences involving the

seven relations given in Definition 1.1, which are exactly the inferences that MPs and

OPs are defined to deal with. Thus, although the projectivity signatures under C have

different meanings than those under RC, the two types of signatures in fact play the

same role under their respective systems.

 By using Propositions 1.7, 1.8 and 2.7, we can even establish a correspondence

between the signatures under C and some of the signatures under RC in the sense that

corresponding signatures share the same inference properties under their respective

systems, as given in Table 3.

Table 3 Correspondence between Signatures under C and RC

Signature under C Signature under RC

+ (increasing) ↑

– (decreasing) ↓

⨹ (additive)a (↑ ∧ ∇→∇)

⊞ (multiplicative) (↑ ∧ ∆→∆)

⨺ (anti-additive) (↓ ∧ ∇→∆)

⊟ (anti-multiplicative) (↓ ∧ ∆→∇)

⊕ (additive and multiplicative) (↑ ∧ ∆→∆ ∧ ∇→∇)

⊖ (anti-additive and anti-multiplicative) (↓ ∧ ∆→∇ ∧ ∇→∆)

● (general) ●
a For lack of the symbols used in Icard (2012), here I use a triangle with a plus (i.e. ⨹) and a triangle

with a minus (i.e. ⨺) to represent the additive and anti-additive properties, respectively. Note that in

Icard (2012), a rhombus is used instead of a triangle.

 Lemmas 2.4 and 2.7 in Icard (2012) give the table of projection of a relation

under a signature and the table of composition of two signatures under C,

respectively. These two tables in general give correct results of the two operations of

projection and composition except that the table given in Lemma 2.7 contains the

following three incorrect results: ⨺ ◦ ⨺ = –, ⊟ ◦ ⊞ = – and ⊖ ◦ ⊟ = ⨹. The correct

results should be ⨺ ◦ ⨺ = +, ⊟ ◦ ⊞ = ⊟ and ⊖ ◦ ⊟ = ⊞. Here I will prove ⊟ ◦ ⊞ =

⊟. The proofs of the other results (as well as the correct results in Icard (2012)) are

similar. Let f1 and f2 be functions with signatures ⊞ and ⊟, respectively. We need to

show that ⊟ represents the strongest +-× property that f2 ◦ f1 has. Let x and y be

elements. We compute f2 ◦ f1(x ∧ y) ≡ f2(f1(x ∧ y)) ≡ f2(f1(x) ∧ f1(y)) (because f1 is

multiplicative) ≡ f2(f1(x)) ∨ f2(f1(y)) (because f2 is anti-multiplicative) ≡ f2 ◦ f1(x) ∨ f2

◦ f1(y). This shows that f2 ◦ f1 is anti-multiplicative, i.e. it has signature ⊟. To show

that anti-multiplicativity is the strongest such property, we have to show that f2 ◦ f1 is

not also anti-additive. To do this, we let f1 = everybody and f2 = not everybody in a

universe composed of “persons”. Note that everybody and not everybody are functions

with signatures ⊞ and ⊟, respectively. We then show that not everybody ◦ everybody

is not anti-additive by showing that “Not everybody loves or hates everybody”21 is

not equivalent to “Not everybody loves everybody and not everybody hates

everybody”. To this end, we construct the following counterexample. Let Ư = {x, y},

loves = {(x, x), (y, y)}, hates = {(x, y), (y, x)}. In this model, “Not everybody loves

21 In GQT, “Not everybody loves or hates everybody” can be represented as not

everybody(everybody)(loves ∨ hates).

everybody and not everybody hates everybody” is true but “Not everybody loves or

hates everybody” is false (because it is true that everybody loves or hates everybody).

 After correcting the mistakes in the aforesaid two tables, one can then see that

the above pairs of corresponding signatures share the same results of projection and

composition by checking each entry in the tables. For example, according to Lemma

2.4 in Icard (2012) 22 , under C we have ⊞[∆] = ∆. By Table 3 above, the

corresponding result under RC should be (↑ ∧ ∆→∆)[∆] = ∆, which is correct.

Moreover, according to Lemma 2.7 in Icard (2012), under C we have ⊟ ◦ ⊟ = +. By

Table 3, the corresponding result under RC should be (↓ ∧ ∆→∇) ◦ (↓ ∧ ∆→∇) = ↑,

which is also correct.

 Moreover, the signatures of the classical quantifiers and the two basic functions

ID and not under C and RC are also consistent with the above correspondence. For

example, the signature of every / all in respect of its 2nd argument is ⊞ under C and (↑

∧ ∆→∆) under RC, and this is consistent with the correspondence between ⊞ and (↑

∧ ∆→∆) given in Table 3.

 Under both C and RC, the derivation of an inference is based on the following

elements: (i) the signatures of the relevant quantifiers and functions, (ii) the projection

of the relevant relations under the relevant signatures, (iii) the composition of the

relevant signatures, (iv) the JOIN operation among the relevant relations, (v) the

projectivity of the relevant ground terms and contexts, and (vi) the relevant inference

rules. For elements (i) – (iii), there is a correspondence between the result derived

under C and that derived under RC as discussed above. For elements (iv) – (vi), the

relevant results, definitions and rules under C and RC are exactly the same.

 We can thus conclude that for every inference involving the classical quantifiers

and the two basic functions that is derivable under C, there is a corresponding version

under RC, or in other words, all inferences involving the classical quantifiers and the

two basic functions that are derivable under C are also derivable under RC. For

example, if we let t = all(members)(elderly) and assume elderly ∆ teenagers, then we

have Pro[t(x←elderly)] = ⊞ under C. By the Substitution Rule, we then have

elderly ∆ teenagers
Pro[t(x←elderly)] = ⊞

t ∆ t(teenagers←elderly)

22 To facilitate comparison, in what follows we modify the notations for the seven relations and
projection used in Icard (2012).

because we have ⊞[∆] = ∆ under C. The above inference can be written in ordinary

English as (note that C does not deal with conditions (if any) associated with

inferences):

(20) All members are elderly ∆ All members are teenagers

Now the above derivation has a corresponding version under RC. By Definition 3.3,

we have Pro[t(x←elderly)] = (↑ ∧ ∆→∆) under RC. By the Substitution Rule, we then

have

elderly ∆ teenagers
Pro[t(x←elderly)] = (↑ ∧ ∆→∆)

t ∆ t(teenagers←elderly)

because we have (↑ ∧ ∆→∆)[∆] = ∆ under RC. Thus, the inference in (20) that is

derivable under C is also derivable under RC (which can also handle the condition

associated with that inference, i.e. there is some member). Moreover, since there are

some signatures under RC which have no corresponding signatures under C (for

example, there is no signature under C corresponding to (∆→∆) under RC), we know

that some inferences not derivable under C are derivable under RC.

 Like C, RC is incomplete. For example, it is not possible to derive the following

inference that involves the contradictory relation between no and some as well as the

exclusive relation between more than 1/2 of and less than 1/2 of under RC (unless the

number of “clubs” in question is odd, in which case more than 1/2 of and less than 1/2

of are contradictory to each other):

(21) More than 1/2 of the clubs admit no male members ≡

Less than 1/2 of the clubs admit some male members

But the above inference is valid (regardless of the oddness/evenness of the number of

“clubs”) and can be derived using the Natural Logic discussed in Keenan (2003,

2008), which is based on the concepts of complement (also called outer negation) and

post-complement (also called inner negation). Under RC, we can only derive the

following weaker inference:

(22) More than 1/2 of the clubs admit no male members ≤

At most 1/2 of the clubs admit some male members

 The above facts show that there are still unsolved questions. Can we obtain a

complete system by incorporating some inference rules from Keenan’s Natural Logic

as well as other inference rules into RC? What other techniques do we need for

deriving valid inferences under RC? Moreover, in the worked examples above, the

determination of conditions for valid inferences is a separate process from the

operation (projection and composition) of projectivity signatures and use of inference

rules. Can we incorporate these conditions into the signatures and determine these

conditions in a parallel fashion with the operation of signatures and use of inference

rules? These issues have to be left for future work.

4. Conclusion

 This paper has mainly borrowed ideas from Icard (2012) and Chow (2012,

2017), each of which has its own strengths and weaknesses. Icard (2012) has

developed a formal reasoning system that can handle inclusion and exclusion

reasoning at the same time. But the system only covers a small range of quantifiers

because it is based on the +-× properties, which are too strong and have excluded

many quantifiers that satisfy important exclusion inferences. Neither does his system

handle the conditions for valid inferences. Chow’s theory covers a much wider range

of quantifiers because it is based on the notions of MPs and OPs, which are more

appropriate for the study of inclusion and exclusion reasoning. His theory does

include the conditions for valid inferences between sentences, but has not considered

the conditions for valid inferences between predicates. Moreover, under his theory,

inclusion reasoning and exclusion reasoning are two separate realms.

 By combining the merits and avoiding the demerits of Icard (2012) and Chow

(2012, 2017), we have developed a formal system, namely RC, which can derive all

inferences involving the classical quantifiers and the two basic functions that are

derivable under Icard’s system as well as some inferences not derivable under that

system. Some of these inferences are associated with conditions which are

summarized in the Appendix. We have also discussed an example which shows that

the order of using the inference rules may affect the derivation results.

 Moreover, we have also devised a transparent symbolism for the 15 possible

projectivity signatures by borrowing ideas from Chow (2012, 2017). This symbolism

greatly facilitates the computations of projection and composition, making it

unnecessary to provide computation tables for these operations as was done in Icard

(2012). Such computation tables will be formidable under RC as there are now 15

signatures. For example, a full table for composition will be a 15 × 15 table.

 While RC is incomplete, this paper has contributed to deepening our

understanding of some important properties of generalized quantifiers and inferences

associated with these properties, especially the exclusion inferences. We believe that

RC will have a role to play in the development of Natural Logic (or Natural Language

Inferences).

Appendix: Signatures and Conditions of some Functions

This Appendix provides a list of some important functions (including logical

operators / generalized quantifiers) and their projectivity signatures and sufficient

conditions for valid inferences. For each function, the signature listed in the middle

column below represents the strongest MP and/or OP it possesses. For quantifiers

with more than one argument, the signature in respect of each argument is specified.

Otherwise, the signature in respect of that argument is understood to be ●. For a

function with complex signature, different components of the signature may be

associated with different conditions. For clarity, the components of a complex

signature are listed on separate rows with their corresponding conditions given in the

right column (where “–” represents no condition). In what follows, A and B represent

the 1st (unary) argument and the 2nd (n-ary) argument of a determiner, while A, B1 and

B2 represent the 1st (unary) argument and the 2nd and 3rd (n-ary) arguments of an

identity comparative quantifier. For example, the information given below shows that

every / all has complex signature “(↓ ∧ ∇→∆)” in respect of the 1st argument.

Moreover, every / all is decreasing (i.e. ↓) with no additional condition and

anti-exhaustive (i.e. ∇→∆) given the additional condition that ∀x1...xn–1.{xn: (x1, ...

xn) ∈ B} ≠ Ư.

Function Signature Condition

ID

↑ –

∆→∆ –

∇→∇ –

not

↓ –

∆→∇ –

∇→∆ –

Smith,

i.e. singular proper name

↑ –

∆→∆ –

∇→∇ –

every / all

1st
↓ –

∇→∆ ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} ≠ Ư

2nd
↑ –

∆→∆ A ≠ ∅

some

1st
↑ –

∇→∇ ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} ≠ ∅

2nd
↑ –

∇→∇ A ≠ ∅

no

1st
↓ –

∇→∆ ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} ≠ ∅

2nd
↓ –

∇→∆ A ≠ ∅

not every / not all

1st
↑ –

∇→∇ ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} ≠ Ư

2nd
↓ –

∆→∇ A ≠ ∅

more than n, at least n both: ↑ –

fewer than n, at most n both: ↓ –

most 2nd
↑ –

∆→∆ –

more than r of

(1/2 ≤ r < 1)
2nd

↑ –

∆→∆ –

more than r of

(0 < r < 1/2)
2nd

↑ –

∇→∇ –

at least r of

(1/2 < r < 1)
2nd

↑ –

∆→∆ –

at least r of

(0 < r ≤ 1/2)
2nd

↑ –

∇→∇ –

less than r of

(1/2 < r < 1)
2nd

↓ –

∆→∇ –

less than r of

(0 < r ≤ 1/2)
2nd

↓ –

∇→∆ –

at most r of

(1/2 ≤ r < 1)
2nd

↓ –

∆→∇ –

at most r of

(0 < r <1/2)
2nd

↓ –

∇→∆ –

exactly r of (1/2 < r < 1) 2nd: ∆→∆ –

exactly r of (0 < r <1/2) 2nd: ∇→∆ –

between q and r of

(1/2 < q < r < 1)
2nd: ∆→∆ –

between q and r of

(0 < q < r < 1/2)
2nd: ∇→∆ –

more than r or

less than q of

(1/2 < q < r < 1)

2nd: ∆→∇ –

more than r or

less than q of

 (0 < q < r < 1/2)

2nd: ∇→∇ –

all ... except Smith

1st
∆→∆ –

∇→∆ ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} ∪ {s} ≠ Ư

2nd
∆→∆ A – {s} ≠ ∅

∇→∆ –

no ... except Smith

1st
∆→∆ –

∇→∆ ∀x1...xn–1.{xn: (x1, ... xn) ∈ B} – {s} ≠ ∅

2nd
∆→∆ –

∇→∆ A – {s} ≠ ∅

the same ... as ...

1st

↓ –

∇→∆
∀x1...xn–1.{xn: (x1, ... xn) ∈ B1}

≠ {xn: (x1, ... xn) ∈ B2}

2nd
∆→∆ ∀x1...xn–1.A ∩ {xn: (x1, ... xn) ∈ B2} ≠ ∅

∇→∆ ∀x1...xn–1.A – {xn: (x1, ... xn) ∈ B2} ≠ ∅

3rd
∆→∆ ∀x1...xn–1.A ∩ {xn: (x1, ... xn) ∈ B1} ≠ ∅

∇→∆ ∀x1...xn–1.A – {xn: (x1, ... xn) ∈ B1} ≠ ∅

different ... than ...

1st

↑ –

∇→∇
∀x1...xn–1.{xn: (x1, ... xn) ∈ B1}

≠ {xn: (x1, ... xn) ∈ B2}

2nd
∇→∇ ∀x1...xn–1.A – {xn: (x1, ... xn) ∈ B2} ≠ ∅

∆→∇ ∀x1...xn–1.A ∩ {xn: (x1, ... xn) ∈ B2} ≠ ∅

3rd
∇→∇ ∀x1...xn–1.A – {xn: (x1, ... xn) ∈ B1} ≠ ∅

∆→∇ ∀x1...xn–1.A ∩ {xn: (x1, ... xn) ∈ B1} ≠ ∅

References

Beghelli, F. (1994). Structured Quantifiers. In Kanazawa, M. & Piñón, C. (Eds.),

Dynamics, Polarity and Quantification (pp. 119-143). Stanford: CSLI Publications.

van Benthem, J. (1986). Essays in Logical Semantics, Dordrecht: Reidel.

Chow, K.F. (2012). Generalizing Monotonicity Inferences to Opposition Inferences.

In Aloni, M. et al (Eds.), Proceedings of the 18th Amsterdam Colloquium (pp.

281-290). Berlin: Springer.

Chow, K.F. (2017), Opposition Inferences and Generalized Quantifiers. In Beziau,

J.-Y. and Georgiorgakis, S. (Eds.), New Dimensions of the Square of Opposition

(pp. 155-199), München: Philosophia Verlag GmbH.

Icard, T.F. (2012). Inclusion and Exclusion in Natural Language. Studia Logica,

100(4), 705-725.

Icard, T.F. (2014). Higher-Order Syllogistics. In: Morrill G. et al (Eds.), Formal

Grammar (pp. 1-14). Berlin: Springer.

Icard, T. F. & Moss, L. S. (2014). Recent Progress on Monotonicity. Linguistic Issues

in Language Technology, 9(7), 167-194.

Keenan, E.L. (2003). Excursions in Natural Logic. In Casadio, C. et al (Eds.),

Language and Grammar: Studies in Mathematical Linguistics and Natural

Language (pp. 31-52). Stanford: CSLI.

Keenan, E.L (2008). Further Excursions in Natural Logic: The Mid-Point Theorems.

In Hamm, F. & Kepser, S. (Eds.), Logics for Linguistic Structures (pp. 87-104).

Berlin: Mouton de Gruyter.

Keenan, E.L. & Faltz, L.M. (1985). Boolean Semantics for Natural Language.

Dordrecht: Reidel.

Keenan, E.L. & Westerståhl, D. (2011). Generalized Quantifiers in Linguistics and

Logic. In van Benthem, J. & ter Meulen, A. (Eds.), Handbook of Logic and

Language (Second edition) (pp. 859-910). Amsterdam: Elsevier Science.

MacCartney, B. (2009). Natural Language Inference, Ph.D. Dissertation. Stanford

University.

MacCartney, B., & Manning, C.D. (2009). An extended model of natural logic. In

Proceedings of the Eighth International Conference on Computational Semantics

(pp. 140-156).

Moss, L. S. (2012). The Soundness of Internalized Polarity Marking. Studia Logica,

100(4), 683–704.

Peters, S. & Westerståhl, D. (2006). Quantifiers in Language and Logic. Oxford:

Clarendon Press.

Sánchez Valencia, V. (1991). Studies on Natural Logic and Categorial Grammar,

Ph.D. Dissertation, Universiteit van Amsterdam.

