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Abstract. This paper proposes a new treatment of quantifiers under the theoret-

ical framework of Inquisitive Semantics (IS). After discussing the difficulty in 

treating quantifiers under the existing IS framework, I propose a new treatment 

of quantifiers that combines features of IS and the Generalized Quantifier Theo-

ry (GQT). My proposal comprises two main points: (i) assuming that the out-

puts of all quantifiers are non-inquisitive; and (ii) deriving a predicate X* of 

type s→(en
→t) corresponding to each predicate X of type en

→T. By using X*, 

we can then restore the traditional treatment of GQT under the IS framework. I 

next point out that to properly handle the pair list reading of some questions 

with “every”, we have to revert to the old treatment of “every”. I also introduce 

(and prove) a theorem that shows that the new treatment of “every” is just a 

special case of the old treatment, and conclude that the new treatment of all 

quantifiers other than “every” plus the old treatment of “every” is sufficient for 

the general purpose of treating quantified statements and questions. 

Keywords: Inquisitive Semantics, Generalized Quantifier Theory, inquisitive-

ness, pair list reading. 

1 Basic Notions of IS 

In the 2010s, Inquisitive Semantics (IS) has risen to become an influential theory that 

provides a uniform treatment for declaratives and interrogatives. To facilitate subse-

quent discussion in this paper, I first introduce some basic notions of IS. Under IS, 

there are three tiers of notions that are based on possible worlds. The first tier consists 

of the possible worlds (hereinafter “worlds”) themselves with type s. The second tier 

consists of information states (hereinafter “states”), which are sets of worlds, with 

type s→t. The third tier consists of propositions, which are non-empty sets of states, 

i.e. sets of sets of worlds, with type (s→t)→t., that satisfy downward closure, i.e. 

whenever a state belongs to a proposition p, then all subsets of that state also belong 

to p. For convenience, the symbol T is often used as an abbreviation of the type 

(s→t)→t. 

                                                           
* This is the revised version of a paper in The Proceedings of Logic and Engineering of Natural 

Language Semantics 15 (LENLS15). The revised paper was presented on 12 November 2018. 
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Let p be a proposition and let’s assume that every proposition discussed in this pa-

per consists of a finite number of states (which is a standard assumption in the IS 

literature). The alternatives of p are the maximal states of p, i.e. those states that are 

not proper subsets of other states. We say that p is informative iff1 ∪p ≠ W2, where 

W represents the set of all worlds. We say that p is inquisitive iff p consists of more 

than one alternative. Apart from the usual set operations such as ∪ and ∩, there are 

also two special set operations under IS, namely relative pseudo-complement (repre-

sented by �) and absolute pseudo-complement (represented by ~), which can be de-

fined as follows (in what follows, p and q are propositions, Power(S) represents the 

power set of the set S): 

 p � q = {i ∈ Power(W): Power(i) ∩ p ⊆ q} (1) 

 ~p = Power(W – ∪p) (2) 

There are also two projection operators: the ! and ? operators, whose functions are 

to turn any proposition into an assertion (which is defined as a non-inquisitive propo-

sition under IS) and a question (which is defined as a non-informative proposition 

under IS), respectively. These two operators can be defined as follows: 

 !p = Power(∪p) (3) 

 ?p = p ∪ ~p (4) 

2 Treatment of Sub-sentential Constituents under IS 

In recent years, attempts have been made under IS to treat sub-sentential constituents. 

The types of these constituents are all based on the type of propositions, i.e. T. For 

example, the types of unary and, in general, n-ary predicates are e→T and en
→T3, 

respectively. Moreover, it is assumed under IS that all simple n-ary predicates (i.e. 

predicates with no internal structure) are non-inquisitive, i.e. the outputs of these 

functions are non-inquisitive propositions. For illustration, let’s consider the follow-

ing model. 

Table 1. Model M1 

Ư = {john, mary}, W = {w1, w2, w3, w4} 
 

                                                           
1  In this paper, we use “iff” to represent “if and only if”. 
2  In this paper, we use the symbols ∪ and ∩ to represent the generalized union and intersec-

tion operations, respectively. 
3  In this paper, I adopt the uncurried form of n-ary predicates, i.e. the input of an n-ary predi-

cate is an n-tuple. Here I use en to represent the type of n-tuples of entities with type e. 
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sing = john ↦4 {{w1, w2},  {w1}, {w2}, ∅}; 

mary ↦ {{w1, w3},  {w1}, {w3}, ∅} 
 

 

One may check that the unary predicate “sing” given above is a function with type 

e→T. For each member x of Ư, this function maps x to the power set of the set of 

worlds in which “x sang” is true. Since this is the power set of a set, it contains only 

one alternative and is thus non-inquisitive. Now consider ?(sing(john)), which can be 

used to represent the question “Did John sing?”. By using the definitions given above, 

one can calculate 

 ?(sing(john)) = {{w1, w2},  {w3, w4},  {w1}, {w2}, {w3}, {w4}, ∅} (5) 

Note that the above result does have the form of a proposition, i.e. a non-empty set of 

sets of worlds satisfying downward closure. Moreover, since ∪?(sing(john)) = W, 

this proposition is non-informative, i.e. a question. It has two alternatives, i.e. {w1, 

w2}, and {w3, w4}, which represent the two possible answers to the question “Did 

John sing?”. For example, {w1, w2} represents the answer “Yes” because w1 and w2 

are exactly the worlds in which “John sang” is true under M1. 

Quantifiers, an important subtype of sub-sentential constituents, are also treated in 

the recent IS literature. However, the treatment of quantifiers under IS as in [2-3, 9] is 

different from the traditional treatment under the Generalized Quantifier Theory 

(GQT). For example, the denotation of “every” is written in [2-3] as: 

 every = λXλY[∩x ∈ Ư (X(x) � Y(x))] (6) 

which looks quite different from that given in standard GQT literature (such as [7-8]): 

 every = λXλY[X ⊆ Y] (7) 

Of course one may argue that the difference between (5) and (6) is superficial be-

cause the denotation in (5) is in fact a “translation” of the following first order state-

ment into the IS language: ∀x ∈ Ư [X(x) → Y(x)], which is equivalent to the set theo-

retic statement X ⊆ Y. But not all quantified statements have equivalent first order 

statements. Consider the denotation of the quantifier “most”: 

 most = λXλY[|X ∩ Y| / |X| > 1/2] (8) 

According to modern GQT studies (e.g. [8]), a quantified statement with “most” can-

not be rewritten as a first order statement. Thus, it is not known under the existing IS 

framework how “most” should be treated. A consequence of this is that some quanti-

fiers that have been successfully treated under GQT may not be treated in a compara-

bly elegant way under the existing IS framework. 

Moreover, there is also the issue of inquisitiveness of quantifiers. As will be shown 

in Section 4 below, the output of “every” is non-inquisitive if both of its arguments 

                                                           
4  The symbol ↦ here is used to represent the “maps to” relation between the input and output 

of a function.  
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are non-inquisitive, and is inquisitive if at least one argument is inquisitive. This 

property which looks quite complicated is useful for handling the “pair list” reading 

of some questions with “every”. 

What about the other quantifiers? As will be elaborated in more detail in Section 4, 

for constituent questions with quantifiers other than “every”, there does not exist a 

reading similar to the “pair list” reading in which the quantifier takes a wider scope 

than the WH-word. Thus, for all quantifiers other than “every”, we may assume a 

simpler property in terms of their inquisitiveness. 

 

3 Proposed New Treatment of Quantifiers 

3.1 The Proposal 

To achieve a proper treatment of quantifiers under IS, I first assume that the outputs 

of all quantifiers (including “every” as long as we are not considering the pair list 

reading) are non-inquisitive. One advantage of this is that all quantifiers can be treat-

ed in a similar fashion. Another advantage is that quantified statements can be given a 

simple representation. In the existing IS framework, the output of the quantifier 

“someone” (as given in [9]) is inquisitive even when its argument is non-inquisitive. 

Thus, the assertion “Someone sang” has to be represented as !(someone(sing)). The ! 

operator here is necessary to ensure that the expression is non-inquisitive (i.e. an as-

sertion). If the outputs of all quantifiers are non-inquisitive, then the aforesaid asser-

tion can be represented more simply as someone(sing). Note that the aforesaid strate-

gy is adequate for the usual purpose of treating quantified statements, unless we are 

considering the pair list reading or studying some special semantic-pragmatic aspects 

of some quantifiers, such as the study in [4]. 

    I next observe that a simple n-ary predicate under IS, whose output is the power 

set of a set of worlds, in fact contains a lot of redundant information. For example, in 

the denotation of “sing” given in Model M1 (see Table 1), the output of sing(john) is 

{{w1, w2},  {w1}, {w2}, ∅}, which contains redundant information because {w1, w2} 

alone can tell us that John sang in w1 and w2. By eliminating the redundancy, we can 

derive predicates with a simpler type, i.e. s→(en
→t). More specifically, corresponding 

to each n-ary predicate X with type en
→T, there is a predicate X* with type s→(en

→t) 

and the two predicates can be transformed to each other by the following formulae (in 

what follows, x and w are variables of types en and s, respectively): 

 X* = λw[{x: {w} ∈ X(x)}] (9) 

 X = λx[Power({w: x ∈ X*(w)})] (10) 

By using X*, the traditional treatment of GQT can then be restored under the 

framework of IS. For example, the denotation of “every” under IS will become 

 every = λXλY[Power({w: X*(w) ⊆ Y*(w)})] (11) 
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Since X* and Y* have type s→(e→t) and w is a variable with type s, X*(w) and Y*(w) 

have type e→t, which is the type of unary predicates under GQT, and so “X*(w) ⊆ 

Y*(w)” in (11) is exactly parallel to “X ⊆ Y” in (7). 

In general, let Q be a monadic quantifier5 under GQT with n unary predicates 

X1, … Xn each of type e→t as arguments and C(X1, … Xn) be the truth condition 

associated with Q, i.e. Q has the denotation λX1…λXn[C(X1, … Xn)]. Then there is a 

corresponding quantifier (also denoted Q) with n unary predicates (also denoted 

X1, … Xn) each of type e→T as arguments and the denotation of Q under IS is 

 λX1…λXn[Power({w: C(X1
*(w), … Xn

*(w))})] (12) 

Note that according to (12) Q(X1)…(Xn) is the power set of a set of worlds and is thus 

non-inquisitive because it contains only one alternative. This shows that the output of 

Q is non-inquisitive, which is consistent with the assumption above. By using (12), 

one can then write down the denotations of other quantifiers under IS. For example, 

the denotation of “most” under IS can be written as follows: 

 most = λXλY[Power({w: |X*(w) ∩ Y*(w)| / |X*(w)| > 1/2})] (13) 

The proper treatment of quantifiers can help extend the empirical coverage of IS, 

because in natural languages there are many questions containing quantifiers. Under 

IS, given a declarative proposition p, the corresponding polar question can be repre-

sented as “?p”, where “?” is the projection operator defined in (4). Similarly, under IS 

a constituent question “Which X is Y?”, where X and Y are unary predicates, can be 

represented as “which(X)(Y)”, where “which” is a non-exhaustive interrogative oper-

ator defined as follows (the context sensitivity of “which” is ignored here)6: 

 which = λXλY[?(∪x ∈ Ư (X ∩ Y)(x))]7 (14) 

For simplicity, only the “non-exhaustive” reading of interrogative operators is dis-

cussed in this paper. In brief, the non-exhaustive reading of the constituent question 

“Which X is Y?” only requires the answerer to provide at least one X that is Y or to 

answer that there is no X that is Y. The full list of X that is Y is not required. A dis-

cussion of the various “exhaustivity” of interrogative operators can be found in [9-

10]. 

                                                           
5  Monadic quantifiers are quantifiers all arguments of which are unary predicates. In case at 

least one argument is an n-ary predicate (n > 1), the quantifier is called polyadic. 
6  Note that the following denotation of “which” is a bit different from those given in [3, 9] in 

that the following denotation includes a built-in ? operator. The inclusion of this operator is 

to ensure that “No X is Y” is an acceptable answer to the constituent question “Which X is 

Y?”. In other words, I assume in this paper that “which” does not carry the existential pre-

supposition. 
7  For unary predicates X and Y and an y member x, (X ∩ Y)(x) = X(x) ∩ Y(x). 
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3.2 Worked Examples 

For illustration, let’s consider the following model. 

Table 2. Model M28 

Ư = {john, bill, mary, jane, katy}, W = {w1, w2, w3} 
 

boy = john ↦ Power(W); bill ↦ Power(W) 
girl = mary ↦ Power(W); jane ↦ Power(W); katy ↦ Power(W) 
like = (john, bill) ↦ {{w1}, ∅}; 

(john, mary) ↦ {{w2}, ∅}; 

(john, katy) ↦ {{w2}, ∅}; 

(bill, jane) ↦ {{w2, w3}, {w2}, {w3}, ∅}; 

(bill, katy) ↦ {{w3}, ∅}; 

(mary, jane) ↦ {{w1, w3}, {w1}, {w3}, ∅}; 

(mary, katy) ↦ {{w1}, ∅} 
 

boy* = w1 ↦ {john, bill}; w2 ↦ {john, bill}; w3 ↦ {john, bill} 
girl* = w1 ↦ {mary, jane, katy}; 

w2 ↦ {mary, jane, katy}; 

w3 ↦ {mary, jane, katy} 
like* = w1 ↦ {(john, bill), (mary, jane), (mary, katy)}; 

w2 ↦ {(john, mary), (john, katy), (bill, jane)}; 

w3 ↦ {(bill, jane), (bill, katy), (mary, jane)} 
 

 

To simplify presentation, I adopt the following convention: if the output of a func-

tion given a particular input is {∅}, then that input (and output) will not be shown. 

Thus, it is understood that under M2, we have boy(mary) = {∅} and like(john, john) 

= {∅}. For convenience, I have also provided the denotations of boy*, girl* and like* 

above. One may check that these results can be obtained by applying formula (9), and 

that the denotations of boy, girl and like can be obtained from these results by apply-

ing formula (10). 

Now consider the polar question “Does some boy like most girls?”. By using the ? 

operator and the standard GQT concepts for treating iterative quantifiers such as those 

in [6-8], this polar question can be formally represented as 

 ?(some(boy)(most(girl)ACC(like))) (15) 

                                                           
8  Note that the models M2 and M3 given in this paper are highly simplified models. They do 

not include all logically possible worlds (the total number of all such worlds is an astronom-

ical number). For example, M2 does not include those worlds in which John is a girl and 

John likes herself.  One may think that M2 and M3 are models that satisfy certain given pre-

conditions. The satisfaction of these preconditions has greatly reduced the number of possi-

ble worlds in these two models. 
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where “ACC” represents the accusative case extension operator in [6] (note that 

“most girls” is in the accusative “semantic” case in the above polar question, hence 

the “ACC” operator). Let Q be a monadic quantifier. Then QACC is an arity reducer 

that turns any binary predicate R to a unary predicate QACC(R) such that9 

 QACC(R) = λx[Q(λy[R(x, y)])] (16) 

I next compute the denotation of (15) with respect to M2 step by step. To do this, I 

first use (16) to rewrite (15) as 

 ?(some(boy)(λx[most(girl)(λy[like(x, y)])])) (17) 

I then calculate λy[like(x, y)]* for each x ∈ Ư. For example, for x = john, the most 

straightforward way to calculate λy[like(john, y)]* is to make use of like*, which tells 

us that John likes Bill in w1, Mary and Katy in w2 and nobody in w3. So we have 

 λy[like(john, y)]* = w1 ↦ {bill}; w2 ↦ {mary, katy};  w3 ↦ ∅ 

Similarly, we can calculate 

 λy[like(bill, y)]* = w1 ↦ ∅; w2 ↦ {jane};  w3 ↦ {jane, katy} 

 λy[like(mary, y)]* = w1 ↦ {jane, katy}; w2 ↦ ∅;  w3 ↦ {jane} 

 λy[like(jane, y)]* = w1 ↦ ∅; w2 ↦ ∅; w3 ↦ ∅ 

 λy[like(katy, y)]* = w1 ↦ ∅; w2 ↦ ∅; w3 ↦ ∅ 

Using the denotations of most, girl* and λy[like(x, y)]*, I next calculate 

most(girl)(λy[like(x, y)]) for each x ∈ Ư. For example, for x = john, among the three 

worlds, only |girl*(w2) ∩ λy[like(john, y)]*(w2)| / |girl*(w2)| > 1/2 is true, we thus have 

 most(girl)(λy[like(john, y)]) = {{w2}, ∅} 

Similarly, we also have 

 most(girl)(λy[like(bill, y)]) = {{w3}, ∅} 

 most(girl)(λy[like(mary, y)]) = {{w1}, ∅} 

 most(girl)(λy[like(jane, y)]) = {∅} 

 most(girl)(λy[like(katy, y)]) = {∅} 

Summarizing the above in the form of a unary predicate, we have 

 

 

 

                                                           
9  Set theoretic notation is used in [6]. In this paper, this notation is changed to λ-notation for 

consistency with the other parts of the paper. 
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λx[most(girl)(λy[like(x, y)])] = john ↦ {{w2}, ∅}; 

bill ↦ {{w3},∅}; 

mary ↦ {{w1},∅}; 

jane ↦ {∅}; 

katy ↦ {∅} 

 

Transforming the above predicate into the corresponding starred version by using 

formula (9), we have: 

 λx[most(girl)(λy[like(x, y)])]* = w1 ↦ {mary}; w2 ↦ {john}; w3 ↦ {bill} (18) 

Using the denotations of some, boy* and λx[most(girl)(λy[like(x, y)])]*, I then cal-

culate 

 some(boy)(λx[most(girl)(λy[like(x, y)])]) = {{w2, w3}, {w2}, {w3}, ∅} (19) 

Finally, using the definition of ?, I can then calculate 

 ?(some(boy)(λx[most(girl)(λy[like(x, y)])])) = {{w2, w3}, {w1}, {w2}, {w3}, ∅} (20) 

The final result above contains two alternatives corresponding to the two answers to 

the polar question “Does some boy like most girls?” under M2, namely {w2, w3} cor-

responding to “Yes” and {w1} corresponding to “No”, because it is true in w2 and w3 

(but not w1) that some boy likes most girls. 

Next consider the constituent question “Which boy likes most girls?”. By using the 

interrogative operator “which”, this constituent question can be formally represented 

as 

 which(boy)(most(girl)ACC(like)) (21) 

I next compute the denotation of the above with respect to M2. As in the above ex-

ample, I first use (16) to rewrite the above as 

 which(boy)(λx[most(girl)(λy[like(x, y)])]) (22) 

As I have already calculated the denotation of λx[most(girl)(λy[like(x, y)])]) 

above, what I have to do next is to use the denotations of which, boy and 

λx[most(girl)(λy[like(x, y)])]) to calculate the denotation of (22). To do this, I first 

calculate (boy ∩ λx[most(girl)(λy[like(x, y)])]))(z) for every z ∈ Ư: 

 (boy ∩ λx[most(girl)(λy[like(x, y)])]))(john) = {{w2}, ∅} 

 (boy ∩ λx[most(girl)(λy[like(x, y)])]))(bill) = {{w3}, ∅} 

 (boy ∩ λx[most(girl)(λy[like(x, y)])]))(mary) = {∅} 

 (boy ∩ λx[most(girl)(λy[like(x, y)])]))(jane) = {∅} 

 (boy ∩ λx[most(girl)(λy[like(x, y)])]))(katy) = {∅} 
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From the above, we have 

 ∪z ∈ Ư (boy ∩ λx[most(girl)(λy[like(x, y)])]))(z) = {{w2}, {w3}, ∅} (23) 

And finally we obtain the result 

 which(boy)(λx[most(girl)(λy[like(x, y)])]) = {{w2}, {w3}, {w1}, ∅} (24) 

The final result above contains three alternatives corresponding to the three answers 

to the constituent question “Which boy likes most girls?” under M2, namely {w2} 

corresponding to “John”, {w3} corresponding to “Bill” and {w1} corresponding to 

“No boy”, because it is precisely John and precisely Bill who likes most girls in w2 

and w3 respectively, whereas no boy likes most girls in w1. 

4 Pair List Reading 

4.1 The Phenomenon 

However, the new treatment of quantifiers proposed in this paper cannot handle the 

pair list reading of some questions. Consider the question “Which book did every girl 

read?”, which is ambiguous between at least two readings: the “individual reading” 

and the “pair list reading”. Under the individual reading, the question can be para-

phrased as “Which book x is such that every girl read x?”, and can thus be formally 

represented as 

 which(book)(every(girl)NOM(read)) (25) 

where “NOM” represents the nominative case extension operator in [6]  (note that 

“every girl” is in the nominative “semantic” case in the above question, hence the 

“NOM” operator). The individual reading can be handled by the concepts and method 

discussed in the previous section, except that we further need the following definition 

of the “NOM” operator: 

 QNOM(R) = λy[Q(λx[R(x, y)])] (26) 

The individual reading will not be further discussed. What I am interested in here 

is the pair list reading, which can be paraphrased as “For every girl x, which book did 

x read?”, and can thus be formally represented as10 

 every(girl)(which(book)ACC(read)) (27) 

Under the pair list reading, “every” takes a wider scope than “which” (whereas 

“every” takes a narrower scope than “which” in (25)). Note that if we use the new 

treatment of “every” as given in (11) to handle (27), we have to transform 

which(book)ACC(read) into the starred version by using (9). But since this is a question 

                                                           
10  Here “which(book)” is treated as a quantifier. Note that “which men”, “how many students” 

and the like are called “interrogative quantifiers” in [2]. 
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and is thus non-informative, we would then have which(book)ACC(read)*(w) = Ư for 

all w. But then we would have girl*(w) ⊆ which(book)ACC(read)*(w) for all w and 

hence every(girl)(which(book)ACC(read)) = Power(W), which is obviously an incor-

rect result. What can we do? 

To properly handle the pair list reading, we have to revert to the old treatment of 

“every” given in (6). But there is now a question that needs to be addressed. Now that 

we have two treatments of “every”, i.e. the old treatment given in (6) and the new 

treatment given in (11), we have to make sure that (6) and (11) are consistent with 

each other. This is guaranteed by the following theorem (the proof of which will be 

given in Subsection 4.3): 

 

Theorem 1: Let X and Y be non-inquisitive unary predicates. Then Power({w: X*(w) 

⊆ Y*(w)}) = ∩x ∈ Ư (X(x) � Y(x)). 

 

By comparing the right hand sides of (6) and (11), one can see that (6) is reduced 

to (11) when X and Y, i.e. the two arguments of “every”, are both non-inquisitive by 

virtue of this theorem, and so the new treatment of “every” is in fact a special case of 

the old treatment. When its two arguments are both non-inquisitive, one can use the 

reduced form (11) for convenience. 

But then we have a further question: do we need to do the same for other quantifi-

ers as we did for “every” above? The fact is that for other quantifiers, there is no simi-

lar scope ambiguity between the quantifier and a WH-word as in the case of “every”. 

Consider the question “Which book is recommended by some teacher?” which con-

tains “some”.  Apart from the individual reading in which “some” takes a narrower 

scope than “which”, i.e. a reading which can be paraphrased as “Which book x is such 

that some teacher recommends x?”, does this question also have a reading in which 

“some” takes a wider scope than “which”, i.e. a reading which can be paraphrased as 

“Name some teacher x and tell me which book x recommends”? In the literature, such 

a reading is called the “choice reading”. According to many scholars (including [1]), 

“choice reading” questions do not exist in natural languages. For other quantifiers, it 

is even less likely that they would give rise to a reading in which the quantifier takes a 

wider scope than a WH-word. This means that we do not need to invoke the old 

treatment of these quantifiers as in the case of “every”. 

In conclusion, the new treatment of all quantifiers other than “every” as proposed 

in this paper plus the old treatment of “every” (which in fact includes the new treat-

ment of “every” as a special case) is sufficient for the general purpose of treating 

quantified statements and questions. 

4.2 A Worked Example 

In this subsection, I will illustrate the computation of the pair list reading. Consider 

the following model. 
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Table 3. Model M3 

Ư = {john, mary, jane, RC, OT, DC11}, W = {w1, w2, w3} 
 

boy = john ↦ Power(W) 
girl = mary ↦ Power(W); jane ↦ Power(W) 

book = RC ↦ Power(W); OT ↦ Power(W); DC ↦ Power(W) 

read = 

(john, RC) ↦ {{w1}, ∅}; 

(john, OT) ↦ {{w2, w3}, {w2}, {w3}, ∅}; 

(mary, RC) ↦ {{w1, w2}, {w1}, {w2}, ∅}; 

(mary, OT) ↦ {{w1}, ∅}; 

(mary, DC) ↦ {{w3}, ∅}; 

(jane,RC) ↦ {{w2}, ∅}; 

(jane, OT) ↦ {{w1, w2}, {w1}, {w2}, ∅}; 

(jane, DC) ↦ {{w3}, ∅} 
 

boy* = w1 ↦ {john}; w2 ↦ {john}; w3 ↦ {john} 
girl* = w1 ↦ {mary, jane}; w2 ↦ {mary, jane}; w3 ↦ {mary, jane} 

book* = w1 ↦ {RC, OT, DC}; w2 ↦ {RC, OT, DC}; w3 ↦ {RC, OT, DC} 
read* = w1 ↦ {(john, RC), (mary, RC), (mary, OT), (jane, OT)}; 

w2 ↦ {(john, OT), (mary, RC), (jane, RC), (jane, OT)}; 

w3 ↦ {(john, OT), (mary, DC), (jane, DC))} 
 

 

I next compute the denotation of (27), i.e. the pair list reading of “Which book did 

every girl read?”, with respect to M3. To do this, I first use (16) to rewrite (27) as 

 every(girl)(λx[which(book)(λy[read(x, y)])]) (28) 

I then calculate which(book)(λy[read(x, y)]) for each x ∈ Ư. For example, for x = 

john, since λy[read(john, y)] = RC ↦ {{w1}, ∅}; OT ↦ {{w2, w3}, {w2}, {w3}, ∅}, 

by (14), we have 

 which(book)(λy[read(john, y)]) = {{w1}, {w2, w3}, {w2}, {w3}, ∅} 

Similarly, we also have 

 which(book)(λy[read(mary, y)]) = {{w1, w2}, {w3}, {w1}, {w2}, ∅} 

 which(book)(λy[read(jane, y)]) = {{w1, w2}, {w3}, {w1}, {w2}, ∅} 

 which(book)(λy[read(RC, y)]) = Power(W) 

 which(book)(λy[read(OT, y)]) = Power(W) 

 which(book)(λy[read(DC, y)]) = Power(W) 

                                                           
11  RC, OT and DC can be seen as abbreviations of Robinson Crusoe, Oliver Twist and David 

Copperfield, respectively. 
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Summarizing the above in the form of a unary predicate, we have 

 
λx[which(book)(λy[read(x, y)])] = john ↦ {{w1}, {w2, w3}, {w2}, {w3}, ∅}; 

mary ↦ {{w1, w2}, {w3}, {w1}, {w2}, ∅}; 

jane ↦ {{w1, w2}, {w3}, {w1}, {w2}, ∅}; 
RC ↦ Power(W); 

OT ↦ Power(W); 

DC ↦ Power(W) 

 

Finally, to compute (28), I use (6) and (1) to rewrite (28) as 

 ∩z ∈ Ư ({i ∈ Power(W): Power(i) ∩ girl(z) ⊆ λx[which(book)(λy[read(x, y)])](z)}) (29) 

To compute the above formula, I first have to find out all sets of worlds i such that 

Power(i) ∩ girl(z) ⊆ λx[which(book)(λy[read(x, y)])](z) for each z ∈ Ư. For example, 

in case z = john, since girl(john) = {∅}, Power(i) ∩ girl(john) must be a subset of 

λx[which(book)(λy[read(x, y)])](john) for any i, and so the required set of sets of 

worlds in this case is Power(W). Similarly, in case z = RC, OT or DC, the required set 

of sets of worlds is also Power(W). 

In case z = mary, since girl(mary) = Power(W) and λx[which(book)(λy[read(x, 

y)])](mary) = {{w1, w2}, {w3}, {w1}, {w2}, ∅}, in order for Power(i) ∩ girl(mary) to 

be a subset of {{w1, w2}, {w3}, {w1}, {w2}, ∅}, i must be a member of {{w1, w2}, 

{w3}, {w1}, {w2}, ∅} and every such member satisfies the requirement. Thus, the 

required set of sets of worlds in this case is {{w1, w2}, {w3}, {w1}, {w2}, ∅}. Similar-

ly, in case z = jane, the required set of sets of worlds is also {{w1, w2}, {w3}, {w1}, 

{w2}, ∅}. 

I then find the intersection of all the above sets of sets of world and finally obtain 

 every(girl)(which(book)ACC(read)) = {{w1, w2}, {w3}, {w1}, {w2}, ∅} (30) 

The final result above contains two alternatives corresponding to the two answers to 

the pair list reading of the question “Which book did every girl read?” under M3, 

namely {w1, w2} corresponding to “Mary read RC and Jane read OT”, and {w3} cor-

responding to “Both Mary and Jane read DC”. Note that although the books that Mary 

and Jane precisely read in w1 and w2 are not the same (Mary also read OT in w1 while 

Jane also read RC in w2), w1 and w2 are grouped under the same alternative in (30) 

because “which” in this question has a non-exhaustive reading, i.e. “Mary read RC 

and Jane read OT” is an acceptable answer to the question in both w1 and w2. 

4.3 Some Proofs 

In this subsection, I will prove Theorem 1. But before doing this, I have to prove three 

lemmas first. 

 

Lemma 2: Let p(w, x) be a proposition with variables w and x. Then Power({w: ∀x 

∈ Ư [p(w, x)]}) = ∩x ∈ Ư (Power({w: p(w, x)})). 
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Proof: Let V be an arbitrary set of worlds. Then 

 V ∈ Power({w: ∀x ∈ Ư [p(w, x)]})  

iff V ⊆ {w: ∀x ∈ Ư [p(w, x)]}  

iff ∀w ∈ V ∀x ∈ Ư [p(w, x)]  

iff ∀x ∈ Ư ∀w ∈ V [p(w, x)]  

iff ∀x ∈ Ư [V ⊆ {w: p(w, x)}]  

iff ∀x ∈ Ư [V ∈ Power({w: p(w, x)})]  

iff V ∈ ∩x ∈ Ư (Power({w: p(w, x)}))  

From the above, we have Power({w: ∀x ∈ Ư [p(w, x)]}) = ∩x ∈ Ư (Power({w: p(w, 

x)})). � 

 

Lemma 3: Let i, s and t be sets of worlds. Then i ∩ s ⊆ t iff Power(i) ∩ Power(s) ⊆ 

Power(t). 

Proof: (i) First assume that i ∩ s ⊆ t. Let j be an arbitrary set of worlds and j ∈ Pow-

er(i) ∩ Power(s), i.e. j ∈ Power(i) ∧ j ∈ Power(s). But this is equivalent to j ⊆ i ∧ j ⊆ 

s, i.e. j ⊆ i ∩ s. From this we have j ⊆ t, i.e. j ∈ Power(t). We have thus proved that 

∀j[j ∈ Power(i) ∩ Power(s) → j ∈ Power(t)], i.e. Power(i) ∩ Power(s) ⊆ Power(t). 

(ii) Next assume that Power(i) ∩ Power(s) ⊆ Power(t). Let w be an arbitrary world 

and w ∈ i ∩ s, i.e. w ∈ i ∧ w ∈ s. But this is equivalent to {w} ∈ Power(i) ∧ {w} ∈ 

Power(s), i.e. {w} ∈ Power(i) ∩ Power(s). From this we have {w} ∈ Power(t), i.e. w 

∈ t. We have thus proved that ∀w[w ∈ i ∩ s → w ∈ t], i.e. i ∩ s ⊆ t. 

Combining (i) and (ii) above, the lemma is proved.  � 

 

Lemma 4: Let p and q be non-inquisitive propositions. Then p � q = Power({w: {w} 

∈ p → {w} ∈ q}). 

Proof: Since p and q are non-inquisitive propositions, by the definition of inquisitive-

ness, each of p and q has exactly one alternative, say s and t, respectively. By the 

definition of alternatives, we have p = Power(s) and q = Power(t). From this we have 

 Power({w: {w} ∈ p → {w} ∈ q})  

= {i: i ⊆ {w: {w} ∈ p → {w} ∈ q}}  

= {i: i ⊆ {w: {w} ∈ Power(s) → {w} ∈ Power(t)}}  

= {i: i ⊆ {w: {w} ⊆ s → {w} ⊆ t}}  

= {i: i ⊆ {w: w ∈ s → w ∈ t}}  

= {i: ∀v ∈ W[v ∈ i → v ∈ {w: w ∈ s → w ∈ t}]}  

= {i: ∀v ∈ W[(v ∈ i ∧ v ∈ s) → v ∈ t]}  

= {i: i ∩ s ⊆ t}  

= {i: Power(i) ∩ Power(s) ⊆ Power(t)} by lemma 3 

= {i: Power(i) ∩ p ⊆ q}  

= p � q by (1) 

� 

 

 

Proof of Theorem 1: Let X and Y be non-inquisitive unary predicates and z be an 

arbitrary variable of type e. Then X(z) and Y(z) are non-inquisitive propositions. 
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 Power({w: X*(w) ⊆ Y*(w)})  

= Power({w: {x: {w} ∈ X(x)} ⊆ {x: {w} ∈ Y(x)}}) by (9) 

= Power({w: ∀z ∈ Ư [z ∈ {x: {w} ∈ X(x)} → z ∈ {x: 

{w} ∈ Y(x)}]}) 

 

= Power({w: ∀z ∈ Ư [{w} ∈ X(z) → {w} ∈ Y(z)]})  

= ∩z ∈ Ư (Power({w: {w} ∈ X(z) → {w} ∈ Y(z)})) by Lemma 2 

= ∩z ∈ Ư (X(z) � Y(z)) by Lemma 4 

�  

5 Conclusion 

In this paper, I have proposed a new treatment of quantifiers. By combining features 

of IS and GQT, this new treatment is able to extend the coverage of IS to questions 

with quantifiers as well as retain the traditional truth conditions of quantifiers under 

GQT. I have also pointed out that the old treatment of “every” is still needed for treat-

ing the pair list reading of some questions with “every”. But apart from this, the new 

treatment of all other quantifiers is sufficient for the general purpose of treating quan-

tified statements and questions. In fact, even the new treatment of “every” is useful 

and convenient in many cases, provided that we are not treating the pair list reading. I 

have also shown that the new treatment of “every” is just a special case of the old 

treatment. 

However, given the limited space, this paper has only discussed the basics of a the-

ory of quantified statements and questions that combines IS and GQT. More specifi-

cally, regarding quantifiers, this paper has only discussed monadic quantifiers and 

iteration of these quantifiers. Regarding interrogatives, this paper has only discussed 

polar questions and constituent questions with the non-exhaustive “which”. In future 

studies, the coverage of this theory can be extended to non-iterated polyadic quantifi-

ers (such as those discussed in [7-8]) and other types of questions (such as the alterna-

tive questions, open disjunctive questions, rising interrogatives and tag questions 

discussed in [1, 5]) as well as constituent questions of other types of exhaustivity 

(such as the strongly exhaustive and weakly exhaustive readings discussed in [9-10]).  
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