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Abstract 

 

This paper develops a theory on opposition inferences – quantifier inferences 

involving the contradictory, contrary and subcontrary relations. After the basic notions 

associated with opposition inferences, including opposition properties (OPs), 

o-sensitivities, etc., are defined as generalizations of the notions associated with 

monotonicity inferences, a number of theorems for determining the o-sensitivities of 

various types of monadic generalized quantifiers (GQs), including determiners, type 

<1> GQs and structured GQs, are proposed and proved, resulting in a classification of 

the most commonly used monadic GQs according to their OPs. For iterated polyadic 

GQs, the notion of OP-chain is defined. A principle that enables one to determine the 

o-sensitivities of an iterated GQ according to the o-sensitivities of its constituent 

monadic GQs is then proposed. The o-sensitivities of GQs viewed as sets and 

arguments of other GQs and logical operators, particularly the negation operator, are 

also discussed. Finally, opposition inferences are compared and contrasted with 

monotonicity inferences. It is finally concluded that o-sensitivities are independent of 

monotonicities, and opposition inferences are not subsumable under monotonicity 

inferences. 

 

    1. Introduction 

 

    Opposition inferences constitute an important type of immediate inferences 

studied in Classical Logic. These are inferences involving four types of relations 

defined on the classical square of opposition: subalternation, contradictoriness, 

contrariety and subcontrariety. Based on the definitions of these relations (which will 

be given below), one can immediately obtain the following instances of opposition 

inferences: 

(1) (Given that there is some student.) 

Every student sang. ⇒ Some student sang. 

                                                 
1 This is the author-final version of a paper in Béziau, J.-Y. and Georgiorgakis, S. (eds.), New 

Dimensions of the Square of Opposition, München: Philosophia Verlag GmbH, pp. 155–199, 2017.  
The final publication is available at www.lehmanns.de. When I wrote this paper about three years ago, I 

used the notation CC→CC, CC→SC, SC→SC and SC→CC to denote the 4 opposition properties 
studied in this paper. While these notations fit definition (24) in this paper well, they sound strange to 
the ear because they are not like English words. I now propose to call these 4 properties by the names 
“homo-exclusive”, “anti-exclusive”, “homo-exhaustive” and “anti-exhaustive”, respectively. 



(2) (Given that there is some student.) 

No student sang. ⇒ It is not the case that every student sang. 

 

Apart from these mundane examples, opposition inferences can also help us solve 

some logical puzzles that are not so straight-forward, such as the following: 

(3) Three persons A, B and C each made a remark. Suppose there is some 

student, John is a student and there is only one true statement among the three 

remarks. Which is the only true statement? 

A: Some student sang. 

B: Not every student sang. 

C: John sang. 

To solve this puzzle, we first note that A’s and B’s remarks satisfy the subcontrary 

relation, i.e. they cannot be both false and so one of them must be true. Since there is 

only one true statement among the three, C’s remark must be false, i.e. John did not 

sing. This means that B’s remark must be true, because otherwise it contradicts the 

fact that John did not sing. Thus, we conclude that B’s remark is the only true 

statement. 

 

However, the applicability of classical opposition inferences is limited because 

Classical Logic only studied quantified statements headed by the four classical 

quantifiers: “every”, “no”, “some” and “not every”. The advent of modern 

Generalized Quantifier Theory (GQT) has opened up possible ways to extend the 

classical opposition inferences. Not only can we now consider opposition inferences 

of quantified statements headed by non-classical quantifiers such as “most”, “all … 

except John”, but we can also consider inferences that have very different structures 

than (1) – (3) above such as the following: 

(4) (Given that there is some member.) 

Every member is elderly. ⇒ It is not the case that every member is a teenager. 

Note that although (2) and (4) both make use of the contrary relation, the contrariety 

in (2) is between the quantifiers “no” and “every”, whereas the contrariety in (4) is 

between the predicates “be elderly” and “be a teenager”. 

 

Apart from applications to logical reasoning, opposition inferences also have 

linguistic applications. One such application is to determine the incompatibility 

between two predicates. For instance, from (4) above, we know that “clubs all 

members of which are teenagers” and “clubs all members of which are elderly” are 

incompatible, whereas “clubs of which all teenagers are members” and “clubs of 

which all elderly are members” are not (because it is logically possible to have a club 



that includes all teenagers and elderly as members). As incompatibility is an essential 

element of antonyms that feature in certain linguistic structures, such as those 

identified by Jones (2002), the determination of incompatibility can help us determine 

the well-formedness of certain linguistic structures. 

 

For example, “X rather than Y” is a structure where X and Y should be antonyms. 

Thus, based on the above discussion, we know that the following sentence is 

well-formed: 

(5) I would rather work for a club all members of which are teenagers than a club 

all members of which are elderly. 

Nevertheless, this does not mean that (5) will necessarily become not well-formed if it 

becomes 

(6) I would rather work for a club of which all teenagers are members than a club 

of which all elderly are members. 

because when appearing in an antonymy context like “X rather than Y”, the meanings 

of X and Y will often be construed contrastively so as to become mutually 

incompatible. This is the pragmatic process called “narrowing” in Geurts (2010). 

 

According to Geurts (2010), narrowing is a common phenomenon in antonymy 

contexts. The purpose of this strategy is to narrow down the extensions of one or all 

of the lexical items in contrast by enriching their intensions, thereby sharpening their 

meaning and avoiding semantic oddity. The following is an example from Geurts 

(2010): 

(7) Around here, we don’t like coffee, we love it. 

In the above example, “like” and “love” are not antonyms according to their original 

meanings. But here narrowing has occurred and the meaning of “like” has indeed 

been narrowed down to “like but not love”, which then becomes contrary to “love”. 

That is why “like” and “love” can appear in the above antonymy context. Similarly, in 

(6) the meanings of “club of which all teenagers / elderly are members” may be 

narrowed down to say “club that includes all and only teenagers / elderly as members”, 

so as to make the two types of clubs contrary to each other. Thus, the results of 

opposition inferences can help us determine in what occasion narrowing has occurred 

in sentences with complex quantifier structures in antonymy contexts. 

 

In this paper we will develop a new theory on opposition inferences using some 

notions and results of modern GQT. It will turn out that the classical inferences 

involving the contradictory, contrary and subcontrary relations are just special cases 

of the opposition inferences studied under this new theory. The organization of the 



rest of this paper is as follows. Section 2 provides an account of the basic notions used 

in this paper. Sections 3 and 4 discuss the opposition properties of monadic 

generalized quantifiers (GQs). Section 5 discusses the opposition properties of 

iterated GQs. Section 6 discusses the o-sensitivities of GQs that are viewed as sets 

and arguments of other GQs / logical operators. Section 7 compares and contrasts 

opposition inferences and monotonicity inferences. Section 8 concludes the paper. 

 

     2. Basic Notions 

 

Since many notions of the opposition inferences studied in this paper are 

generalizations of the corresponding notions of monotonicity inferences studied under 

GQT, we will first give an introduction and review of GQT and monotonicity 

inferences. 

 

A GQ can be seen as a second-order predicate with first-order predicates as arguments. 

Different GQs may differ in terms of the number and arities of their arguments, where 

“arities” refer to the number of arguments of the first-order predicates. Lindström 

(1966) devised a special notation to denote the type of a GQ. The notation takes the 

form of a sequence of natural numbers <n1, ... nk> where k is the number of arguments 

of the GQ and n1, ... nk are the arities of each argument. If all the numbers in the 

sequence are 1, the GQ is “monadic”. Otherwise, it is “polyadic”. Thus, type <1> 

GQs are GQs with one unary argument. Determiners (or type <1,1> GQs) are GQs 

with two unary arguments. Structured GQs are GQs with three or more unary 

arguments. 

 

In this paper, we will basically adopt the notation of Keenan (2002) with some 

modifications for representing GQs. Under this notation, a sentence with determiner is 

represented in the following format2: 

(8) Q(A, B) 

where Q is a determiner, A is the nominal or left argument of Q (representing the 

sentential subject) and B is the predicative or right argument of Q (representing the 

sentential predicate). For example, the sentence “Every boy sang” will be represented 

as 

(9) EVERY(BOY, SING) 

The semantics of a GQ is delineated by its truth condition which is expressed by a 

                                                 
2 Note that Keenan (2002)’s original notation is Q(A)(B), where the arguments A and B are put in two 
brackets. In this paper we put all arguments in one bracket because this “flat” structure is more 
convenient for defining properties for GQs which are applicable to all sorts of argument structure (such 
as monotonicities). 



set-theoretic proposition3. For example, the truth condition of EVERY is as follows: 

(10) EVERY(A, B) ⇔ A ⊆ B 

 

The representation of other types of GQs is similar to that of determiners with some 

modifications. Since a type <1> GQ, e.g. NOBODY, only requires a predicative 

argument, the representation of these GQs consists of only one argument. For 

example, the sentence “Nobody sang” may be represented as: 

(11) NOBODY(SING) 

 

Structured GQs are monadic GQs with more than two arguments. According to 

Beghelli (1994), there are several types of structured GQs. In this paper, we will 

consider two main types. The first type is the quantity comparative structured GQs, 

which may occur in different argument structures. In this paper, we will only consider 

the one with two nominal arguments and one predicative argument (denoted <12,1>). 

An example of a sentence with this kind of GQs is “More boys than girls sang”, 

which may be represented as: 

(12) (MORE … THAN …)(BOY, GIRL, SING) 

The second type is the identity comparative structured GQs, which may only occur in 

an argument structure with one nominal argument and two predicative arguments 

(denoted <1,12>). An example of a sentence with this kind of GQs is “Different girls 

sang than danced”, which may be represented as: 

(13) (DIFFERENT … THAN …)(GIRL, SING, DANCE) 

 

If a sentence contains n-ary predicates with n > 1, then it has to be represented by 

polyadic GQs. According to Keenan (1996) and Keenan and Westerståhl (2011), there 

are various types of polyadic GQs. In this paper we will only consider iterated 

polyadic GQs. These are GQs built up from several constituent monadic GQs by an 

operation called iteration. The precise definition of iteration can be found in any 

standard work on GQT such as Peters and Westerståhl (2006). For illustration, the 

following is the representation of the sentence “Every boy sang some song”: 

(14) EVERY(BOY, {x: SOME(SONG)({y: SING(x, y)})}) 

The iterated GQ shown above is composed of two constituent monadic GQs, namely 

EVERY and SOME. Intuitively, the above formula reads “every boy x is such that for 

some song y, x sang y”. 

 

GQT also studies various operations and properties of GQs. Among these operations 

and properties, outer negation, inner negation, dual, converse, symmetry, 

                                                 
3 See Appendix 1 for the truth conditions of some commonly used monadic GQs. 



contrapositivity and monotonicity will be useful in this paper and their definitions are 

given below. Let Q be a monadic GQ with n arguments, the outer negation (denoted 

¬Q), inner negation in the ith argument (1 ≤ i ≤ n) (denoted Q¬i) and dual in the ith 

argument (1 ≤ i ≤ n) (denoted Qdi) are defined as follows: for all X1, … Xn, 

(15) (¬Q)(X1, … Xn) ⇔ ¬(Q(X1, … Xn)) 

(16) (Q¬i)(X1, … Xi, … Xn) ⇔ Q(X1, … ¬Xi, … Xn) 

(17) (Qdi)(X1, … Xi, … Xn) ⇔ ¬(Q(X1, … ¬Xi, … Xn)) 

 

The following three notions are only defined on determiners: 

(18) For a determiner Q, its converse (denoted Q–1) is a determiner such that for all 

A, B, Q(A, B) ⇔ Q–1(B, A). 

(19) A determiner Q is symmetric iff for all A, B, Q(A, B) ⇔ Q(B, A). 

(20) A determiner Q is contrapositive iff for all A, B, Q(A, B) ⇔ Q(¬B, ¬A). 

 

We next turn to monotonicity. Note that monotonicity is definable on both GQs and 

logical operators. 

(21) Let Q be a GQ / logical operator with n arguments. Q is increasing in the ith 

argument (1 ≤ i ≤ n) iff for all X1, … Xi, Xi’, … Xn, Xi ≤ Xi’ ⇒ Q(X1, … 

Xi, … Xn) ≤ Q(X1, … Xi’, … Xn). 

(22) Let Q be as above. Q is decreasing in the ith argument (1 ≤ i ≤ n) iff for all 

X1, … Xi, Xi’, … Xn, Xi ≥ Xi’ ⇒ Q(X1, … Xi, … Xn) ≤ Q(X1, … Xi’, … Xn). 

Q is called monotonic in the ith argument iff it is either increasing or decreasing in that 

argument. Otherwise, it is called non-monotonic in the ith argument. In the above 

definitions, “≤” is a general partial order relation. When used between two sets, it 

represents the subset relation; when used between two propositions, it represents the 

entailment relation4. Here is an instance of monotonicity inferences: 

(23) Every child is jogging. ⇒ Every boy is doing exercises. 

Since CHILD ≥ BOY and JOG ≤ DO-EXERCISES, this example illustrates a general 

fact established in GQT, i.e. EVERY is decreasing in the left argument and increasing 

in the right argument. 

 

In the definitions above, “≤” and “≥” are just two of the possible binary relations 

between sets / propositions. If we replace “≤” and “≥” by general binary relations 

(denoted by R1 and R2), and write them in prefix form (i.e. “R1[X, Y]” instead of “X 

                                                 
4 According to the Boolean Semantics developed by Keenan and Faltz (1985), propositions and 
various word classes (modeled as sets) in natural language form Boolean algebras. Under this approach, 
the entailment relation between propositions and the subset relation between sets are indeed the same 

relation, namely the domination relation (represented by “≤”) of a Boolean algebra. Note that for 

convenience in this paper, sometimes we will use the general symbol “≤”, and sometimes we will use 

the particular symbols “⊆” for sets and “⇒” for propositions. 



R1 Y”), then we obtain the following more general definition: 

(24) Let Q be a GQ / logical operator with n arguments. Q is R1→R2 in the ith 

argument (1 ≤ i ≤ n) iff for all X1, … Xi, Xi’, … Xn, R1[Xi, Xi’] ⇒ 

R2[Q(X1, … Xi, … Xn), Q(X1, … Xi’, … Xn)]. 

Under this definition, the increasing and decreasing monotonicities may be 

represented by “≤→≤” (or equivalently “≥→≥”) and “≥→≤” (or equivalently “≤→≥”), 

respectively. 

 

As mentioned above, “≤” and “≥” are two binary relations between sets / propositions. 

In fact, these two relations can be seen as combinations of even more basic binary 

relations between sets / propositions. There are seven basic binary relations: 

equivalence, subalternation, superalternation, contradictoriness, contrariety, 

subcontrariety and loose relationship. The names of these seven relations are adapted 

from Brown (1984). They are defined as follows. Let X and X’ be sets / propositions 

(in what follows, “=” represents the equality relation between sets or equivalence 

relation between propositions; “<” represents the proper subset relation between sets 

or unilateral entailment relation between propositions; “¬” represents the complement 

of sets or negation of propositions). 

(25) (a) X is equivalent with X’ iff X = X’;  

(b) X is subalternate to X’ iff X < X’; 

(c) X is superalternate to X’ iff X > X’; 

(d) X is contradictory with X’ iff X = ¬X’; 

(e) X is contrary to X’ iff X < ¬X’; 

(f) X is subcontrary to X’ iff ¬X < X’; 

(g) X is loosely related to X’ iff X and X’ do not satisfy (a) – (f) above. 

 

Now “≤” and “≥” are just two possible disjunctions of these seven binary relations, i.e. 

≤ = subalternate or equivalent; ≥ = superalternate or equivalent. In this paper we will 

study two other possible disjunctions of these relations. They are “contrary or 

contradictory” (denoted by “CC” for short) and “subcontrary or contradictory” 

(denoted by “SC” for short), which can be defined using the definitions in (25): 

(26) CC[X, X’] ⇔ X ≤ ¬X’; SC[X, X’] ⇔ ¬X ≤ X’ 

From the above definitions and the contrapositive law, it is easily seen that 

(27) CC[X, X’] ⇔ CC[X’, X]; SC[X, X’] ⇔ SC[X’, X] 

(28) CC[X, X’] ⇔ SC[¬X, ¬X’] 

When X and X’ are propositions, we can also interpret the CC and SC relations 

alternatively as follows: two propositions satisfy the CC relation iff they cannot be 

both true, and they satisfy the SC relation iff they cannot be both false. For example, 



we have CC[TEENAGER, ELDERLY] and SC[AGED-OVER-50, 

AGED-BELOW-51] because an individual cannot be a teenager and elderly at the 

same time, whereas an individual must be either aged over 50 or aged below 51. 

 

By instantiating R1 and R2 in definition (24) as CC and SC, we then have four 

possible properties of Q: “CC→CC”, “CC→SC”, “SC→CC” and “SC→SC”. These 

four properties will henceforth be called “opposition properties” (OPs). We say that Q 

is “o(pposition)-sensitive” in a certain argument iff it possesses any of the aforesaid 

four OPs in that argument. Otherwise, it is o-insensitive in that argument5. Moreover, 

we will denote the sets of GQs possessing or not possessing a certain OP in a certain 

argument by placing a “+” or “–“ sign on the left-hand side (representing the left or 

nominal argument(s)) and right-hand side (representing the right or predicative 

argument(s)) of the name of the OP. For example, –CC→CC+ denotes the set of those 

GQs that are CC→CC in the right but not left argument. 

 

For example, it will be shown below that EVERY ∈ –CC→CC+. An illustration of 

the fact that EVERY is CC→CC in the right argument can be found in (4) above. In 

that example, the two right arguments “is elderly” and “is a teenager” satisfy the CC 

relation and the two propositions “Every member is elderly” and “Every member is a 

teenager” also satisfy the CC relation. To illustrate that EVERY is NOT CC→CC in 

the left argument, we note that although “elderly” and “teenager” satisfy the CC 

relation, the two propositions “Every elderly is member of this club” and “Every 

teenager is member of this club” do not satisfy the CC relation (i.e. they can be both 

true), because we can imagine a club that includes every elderly and teenager (in a 

suitable universe) as its member. 

 

Note that sometimes it is useful to view the entailment and equivalence relations 

between quantified statements as set-theoretic relations between GQs. To this end, we 

first reinterpret GQs as sets. Using determiners as an example (note that the following 

definitions can be generalized to other types of GQs), we can interpret any determiner 

as a second-order set of ordered pairs of sets. For example, we have 

(29) EVERY = {<A, B>: A ⊆ B} 

Based on the above reinterpretation, we can then define the following set-theoretic 

relations between determiners. Let Q, Q’ be determiners. 

                                                 
5 Note that we may talk about “o-sensitivity” on either the GQ level or the argument level. Using 
EVERY(A, B) as an example, on the GQ level, we say that the o-sensitivity of EVERY is, subject to 

certain conditions, SC→CC in the left argument and CC→CC in the right argument; on the argument 

level, we say that the o-sensitivities of the arguments A and B under EVERY are SC→CC and CC→CC, 
respectively. 



(30) Q ⊆ Q’ iff with respect to every model and every A, B, Q(A, B) ⇒ Q’(A, B). 

(31) Q = Q’ iff with respect to every model and every A, B, Q(A, B) ⇔ Q’(A, B). 

For illustration, using the truth conditions of GQs, one can easily derive 

(32) (EXACTLY r OF) ⊆ (AT LEAST r OF) 

(33) MOST = (MORE THAN 1/2 OF) 

 

In Classical Logic, we have the subalternate relation “Every A is B ⇒ Some A is B”. 

But under the modern interpretation of EVERY, this relation is valid only under the 

condition that A is non-empty. Now, under the above reinterpretation, we can express 

this conditionally valid relation as 

(34) Within the domain {<A, B>: A ≠ ∅}, EVERY ⊆ SOME. 

 

    3. O-Sensitivities of Monadic GQs (Single OP) 

 

Having defined the necessary notions, our next task is to derive rules for determining 

the o-sensitivities of monadic GQs. We first state and prove the following general 

theorems: 

Theorem 1 Let Q be a GQ with n arguments. Then with respect to the ith 

argument, Q possesses a certain OP iff each of ¬Q, Q¬i and Qdi 

possesses a different OP according to the following table: 

Q ¬Q Q¬i Q
di

 

CC→CC CC→SC SC→CC SC→SC 

CC→SC CC→CC SC→SC SC→CC 

SC→CC SC→SC CC→CC CC→SC 

SC→SC SC→CC CC→SC CC→CC 
 

Proof: Here we only prove the first row of the table. The remaining rows can be 

proved similarly. By definitions (24) and (26), Q is CC→CC in the ith argument iff 

(35) CC[Xi, Xi’] ⇒ Q(X1, … Xi, … Xn) ≤ ¬Q(X1, … Xi’, … Xn) 

Now (35) is equivalent to 

(36) CC[Xi, Xi’] ⇒ ¬(¬Q)(X1, … Xi, … Xn) ≤ (¬Q)(X1, … Xi’, … Xn) 

Substituting the arbitrary Xi and Xi’ by their negations and using (28) and the 

definitions of inner negation and dual, (35) and (36) can be rewritten as 

(37) SC[Xi, Xi’] ⇒ (Q¬i)(X1, … Xi, … Xn) ≤ ¬(Q¬i)(X1, … Xi’, … Xn) 

(38) SC[Xi, Xi’] ⇒ ¬(Qdi)(X1, … Xi, … Xn) ≤ (Qdi)(X1, … Xi’, … Xn) 

From (36) – (38), we may conclude that ¬Q is CC→SC, Q¬i is SC→CC and Qdi is 

SC→SC in the ith argument. � 

 

Theorem 2 Let Q1 and Q2 be GQs of the same type with Q1 ⊆ Q2. 



(a) If Q2 is CC→CC (SC→CC) in the ith argument, so is Q1. 

(b) If Q1 is CC→SC (SC→SC) in the ith argument, so is Q2. 

Proof: 

(a) Suppose CC[Xi, Xi’] and ║Q1(X1, … Xi, … Xn)║ = 1 6, then since Q1 ⊆ Q2, we 

have ║Q2(X1, … Xi, … Xn)║ = 1. But since Q2 is CC→CC in the ith argument, we 

have ║Q2(X1, … Xi’, … Xn)║ = 0. By Q1 ⊆ Q2 again, we have ║Q1(X1, … Xi’, … 

Xn)║ = 0. We have thus proved that CC[Q1(X1, … Xi, … Xn), Q1(X1, … Xi’, … Xn)] 

i.e. Q1 is CC→CC in the ith argument. The proof for the case SC→CC is exactly the 

same. 

 

(b) Suppose CC[Xi, Xi’] and ║Q2(X1, … Xi, … Xn)║ = 0, then since Q1 ⊆ Q2, we 

have ║Q1(X1, … Xi, … Xn)║ = 0. But since Q1 is CC→SC in the ith argument, we 

have ║Q1(X1, … Xi’, … Xn)║ = 1. By Q1 ⊆ Q2 again, we have ║Q2(X1, … Xi’, … 

Xn)║ = 1. We have thus proved that SC[Q2(X1, … Xi, … Xn), Q2(X1, … Xi’, … Xn)], 

i.e. Q2 is CC→SC in the ith argument. The proof for the case SC→SC is exactly the 

same. � 

 

Theorem 3 Let Q be a determiner and Π be one of the four OPs. 

(a) Q is Π in one argument iff Q–1 is Π in the other argument. 

(b) If Q is symmetric, then Q is Π in both or neither of its arguments. 

Proof: 

(a) Here we only prove the case when Π = CC→CC. The proofs of the other cases are 

similar. Suppose CC[X1, X1’] and Q is CC→CC in the left argument. Then we have 

Q(X1, X2) ⇒ ¬Q(X1’, X2), which may be rewritten as (Q–1)(X2, X1) ⇒ ¬(Q–1)(X2, 

X1’). This shows that Q–1 is CC→CC in the right argument. Similarly, we can prove 

that Q is CC→CC in the right argument iff Q–1 is CC→CC in the left argument. 

 

(b) Let Q be symmetric, then by (18) and (19), Q is self-converse, i.e. Q = Q–1. So by 

(a), Q is Π in one argument iff it is Π in the other argument, i.e. Q is Π in both or 

neither of its arguments. � 

 

Theorem 4 Let Q be a contrapositive determiner. Then Q is CC→CC in an 

argument iff it is SC→CC in the other argument. Q is CC→SC in an 

argument iff it is SC→SC in the other argument. 

Proof: Suppose Q is CC→CC in the right argument and SC[A, A’], which by (28) is 

equivalent to CC[¬A, ¬A’]. Let ║Q(A, B)║ = 1. By contrapositivity of Q, this is 

equivalent to ║Q(¬B, ¬A)║ = 1. But then we must have ║Q(¬B, ¬A’)║ = 0. By 

                                                 
6 In this paper, we use ║p║ to denote the truth value of a proposition p. 



contrapositivity of Q again, this is in turn equivalent to ║Q(A’, B)║ = 0. We have thus 

proved that SC[A, A’] ⇒ CC[Q(A, B), Q(A’, B)], i.e. Q is SC→CC in the left 

argument. Similarly, we can prove that if Q is SC→CC in the left argument, then Q is 

CC→CC in the right argument. The proofs for the cases that Q is CC→CC in the left 

argument and CC→SC in either argument follow the same line. � 

 

The above are general principles. We also need the following particular result: 

Theorem 5 (AT LEAST r OF) (1/2 < r < 1) is CC→CC in the right argument. 

(MORE THAN r OF) (1/2 ≤ r < 1) is CC→CC in the right argument. 

(BETWEEN q AND r OF) (0 < q ≤ r < 1) is not CC→CC in the left 

argument. 

Proof: We first prove (AT LEAST r OF) (1/2 < r < 1) is CC→CC in the right 

argument. Let ║(AT LEAST r OF)(A, B)║ = 1 and CC[B, B’]. Then by (26), B ⊆ ¬B’. 

Since (AT LEAST r OF) is increasing in the right argument by a standard result in 

GQT, we have ║(AT LEAST r OF)(A, ¬B’)║ = 1, which is equivalent to ║(AT MOST 

1 – r OF)(A, B’)║ = 1. Since 1/2 < r < 1, this entails ║(LESS THAN r OF)(A, B’)║ = 

1, which is equivalent to ║¬(AT LEAST r OF)(A, B’)║ = 1. We have thus shown that 

CC[(AT LEAST r OF)(A, B), (AT LEAST r OF)(A, B’)]. Thus, (AT LEAST r OF) is 

CC→CC in the right argument. The fact that (MORE THAN r OF) (1/2 ≤ r < 1) is 

CC→CC in the right argument can be proved similarly. 

 

Next we show that (BETWEEN q AND r OF) (0 < q ≤ r < 1) is not CC→CC in the 

left argument by devising a method for constructing counterexamples for any 0 < q ≤ 

r < 1. Choose any rational number x/y such that q ≤ x/y ≤ r. Construct two finite sets A 

and A’ such that |A| = |A’| = y and A ∩ A’ = ∅. Choose a subset X of A and a subset X’ 

of A’ such that |X| = |X’| = x. Then set B = X ∪ X’. It is easy to check that with these 

predicates, we have CC[A, A’] and ║(BETWEEN q AND r OF)(A, B)║ = 

║(BETWEEN q AND r OF)(A’, B)║ = 1. In other words, we do not have 

CC[(BETWEEN q AND r OF)(A, B), (BETWEEN q AND r OF)(A’, B)], thus 

completing the proof. � 

 

Based on this particular result and the general theorems above, we can then determine 

the o-sensitivities of the proportional determiners. For example, let 1/2 < r < 1, then 

since (EXACTLY r OF) ⊆ (AT LEAST r OF) and (EXACTLY r OF) = (BETWEEN r 

AND r OF), from Theorems 5 and 2, we have (EXACTLY r OF), (AT LEAST r OF) 

∈ –CC→CC+ for 1/2 < r < 1. Next let 1/2 ≤ r < 1. By Theorem 5, we already know 

that (MORE THAN r OF) is CC→CC in the right argument. Moreover, since 

(EXACTLY r + ε OF) ⊆ (MORE THAN r OF), where ε represents any small positive 



number such that 1/2 < r + ε < 1, by Theorem 2, we know that (MORE THAN r OF) 

is not CC→CC in the left argument. Thus, we have (MORE THAN r OF) 

∈ –CC→CC+ for 1/2 ≤ r < 1. 

 

We next consider the classical determiner SOME. First we observe that there is the 

relation (AT LEAST r OF) (0 < r ≤ 1/2) ⊆ SOME, on condition that A ≠ ∅7. Now it 

can be shown that (AT LEAST r OF) is SC→SC in the right argument for 0 < r ≤ 1/28. 

So by Theorem 2(b), we know that SOME is SC→SC in the right argument on 

condition that A ≠ ∅. Note that this condition is essential because when A = ∅, 

║SOME(∅, B)║ = 0 for any B, and so we can never have SC[B, B’] ⇒ SC[SOME(∅, 

B), SOME(∅, B’)]. As for the left argument of SOME, by symmetry of SOME and 

Theorem 3(b), we know that SOME is SC→SC in the left argument subject to certain 

condition. One can easily verify that this condition is B ≠ ∅. The above fact will be 

represented succinctly by SOME ∈ +SC→SC+ (B ≠ ∅; A ≠ ∅)9. 

 

Since EVERY is the right dual of SOME, by Theorem 1, we may conclude that 

EVERY is CC→CC in the right argument subject to certain condition. One can easily 

verify that this condition is A ≠ ∅. Since EVERY is contrapositive according to Zuber 

(2007), by Theorem 4, EVERY is SC→CC in the left argument subject to B ≠ U 

where U represents the universe. Again this condition is essential because when B = U, 

║EVERY(A, U)║ = 1 for any A, and so we can never have SC[A, A’] ⇒ 

CC[EVERY(A, U), EVERY(A’, U)]. The above fact will be represented succinctly by 

EVERY ∈ +SC→CC– ∩ –CC→CC+ (B ≠ U; A ≠ ∅)10. The o-sensitivities of some 

other determiners can be determined in a similar way. 

 

Regarding the absolute determiners and quantity comparative structured GQs, we 

have the following negative results: 

Theorem 6 Every absolute numerical determiner listed in Appendix 1, i.e. (AT 

LEAST n) (n > 1), (AT MOST n) (n > 0), (MORE THAN n) (n > 0), 

(FEWER THAN n) (n > 1), (EXACTLY n) (n > 0), (BETWEEN m 

AND n) (0 < m < n), (ALL EXCEPT n) (n > 0), is o-insensitive in all 

                                                 
7 By Appendix 1, when A = ∅, then for any B, (AT LEAST r OF)(A, B) is trivially true while 

SOME(A, B) is trivially false, and the relation (AT LEAST r OF) ⊆ SOME cannot hold. 
8 By Theorem 5, (MORE THAN r OF) (1/2 ≤ r < 1) is CC→CC in the right argument. Since the right 
dual of (MORE THAN r OF) is (AT LEAST 1 – r OF), by Theorem 1, (AT LEAST 1 – r OF) (0 < 1 – r 

≤ 1/2) is SC→SC in the right argument. Replacing the arbitrary 1 – r by r, we obtain the result: (AT 

LEAST r OF) (0 < r ≤ 1/2) is SC→SC in the right argument. 
9 The conditions B ≠ ∅; A ≠ ∅ are ordered such that the first (second) condition corresponds to the left 
(right) argument of the determiner. 
10 The fact that EVERY is neither SC→CC in the right argument nor CC→CC in the left argument can 
be established by constructing counterexamples. 



arguments. 

Proof: According to Table 1 (see below), for a certain OP and a certain argument, 

there will be a classical determiner or a proportional determiner (with a certain range 

of r) that does not possess that OP in that argument. Now, an absolute numerical 

determiner can be made equivalent to a classical or proportional determiner by setting 

an appropriate cardinality of its left or right argument. Thus, given an absolute 

numerical determiner Q, a certain OP and a certain argument, we can construct a 

model in which Q is equivalent to a suitable classical or proportional determiner that 

does not possess that OP in that argument. This model will also be a counterexample 

showing that the absolute numerical determiner does not possess that OP in that 

argument. Thus, every absolute numerical determiner is o-insensitive in all arguments. 

 

For example, to show that (AT LEAST n) (n > 1) is not SC→SC in the right argument, 

we first observe that (AT LEAST n)(A, B) is equivalent to EVERY(A, B) in a model 

where |A| = n. Since EVERY is not SC→SC in the right argument, we then construct 

a model in which |A| = n and EVERY is not SC→SC in the right argument, such as 

the following: U = {x1, … xn+1}, A = {x1, … xn}, B = {x1, … xn-1, xn+1}, B’ = {x2, … 

xn, xn+1}. Then we have SC[B, B’], and ║EVERY(A, B)║ = ║EVERY(A, B’)║ = 0, 

i.e. SC[EVERY(A, B), EVERY(A, B’)] is not true in this model. Note that this model 

is also a counterexample showing that (AT LEAST n) (n > 1) is not SC→SC in the 

right argument. � 

 

Theorem 7 Every quantity comparative structured GQ listed in Appendix 1, e.g. 

(MORE … THAN …), (PROPORTIONALLY MORE … THAN …), 

etc, is o-insensitive in all arguments. 

Proof: To prove this, we may construct counterexamples to show that a certain GQ 

does not possess a certain OP in a certain argument. Some of these counterexamples 

are given in Appendix 2. Note that apart from the counterexamples shown there, we 

can derive many others based on the properties of these GQs. For example, since 

(EXACTLY AS MANY … AS …) is symmetric with respect to its first and second 

arguments, i.e. (EXACTLY AS MANY … AS …)(A1, A2, B) ⇔ (EXACTLY AS 

MANY … AS …)(A2, A1, B), from a counterexample for the first argument of this 

GQ, e.g. (e) in Appendix 2, one can immediately derive a counterexample for the 

second argument by exchanging the roles of A1 and A2 in (e). Likewise, since 

(MORE … THAN …) and (FEWER … THAN …) are converses with respect to the 

first and second arguments, i.e. (MORE … THAN …)(A1, A2, B) ⇔ (FEWER … 

THAN …)(A2, A1, B), from a counterexample for the third argument of (MORE … 

THAN …), e.g. (c) in Appendix 2, one can immediately derive a counterexample for 



the third argument of (FEWER … THAN …) by exchanging the roles of A1 and A2 in 

(c). Moreover, we can also make use of the entailment relations between these GQs. 

For example, (a) in Appendix 2 can be used as a counterexample to show that 

(MORE … THAN …) is not CC→CC in the first argument, i.e. CC[A1, A1’] and 

║(MORE … THAN …)(A1, A2, B)║ = ║(MORE … THAN …)(A1’, A2, B)║ = 1. 

But since ║(MORE … THAN …)(A1, A2, B)║ = 1 ⇒ ║(FEWER … THAN …)(A1, 

A2, B)║ = 0, one can also use (a) to show that ║(FEWER … THAN …)(A1, A2, B)║ 

= ║(FEWER … THAN …)(A1’, A2, B)║ = 0. Thus, (a) also serves as a 

counterexample showing that (FEWER … THAN …) is not CC→SC in the first 

argument. In this way, one can construct all the required counterexamples based on 

those given in Appendix 2. � 

 

Based on the above results, we can derive valid inferences. For example, the 

following are instances exemplifying the facts that (AT LEAST 3/4 OF) is CC→CC in 

the right argument and SOME is SC→SC in the right argument on condition that its 

left argument is non-empty: 

(39) CC[“At least 3/4 of the members are teenagers”, “At least 3/4 of the members 

are elderly”] 

(40) (Given that there is some member.) 

SC[“Some member is aged over 50”, “Some member is aged below 51”] 

 

    4. O-Sensitivities of Monadic GQs (Multiple OPs) 

 

    In the previous section, we have only considered the case in which a GQ 

possesses a single OP in an argument. In this section, we will consider the possibility 

that a GQ may possess more than one OP in the same argument. To do this, we need 

to introduce some new notions11: 

(41) Let Q be a GQ with n arguments. Q is perfectly consistent in the ith argument 

iff Q(X1, … Xi, … Xn) ⇒ ¬Q(X1, … Y, … Xn) where Y is any subset or 

superset of ¬Xi. 

(42) Let Q be a GQ with n arguments. Q is perfectly complete in the ith argument 

iff ¬Q(X1, … Xi , … Xn) ⇒ Q(X1, … Y, … Xn) where Y is any subset or 

superset of ¬Xi. 

 

We have the following theorem: 

Theorem 8 Let Q be a GQ with n arguments. With respect to the ith argument, 

                                                 
11 The notions of “perfect consistency” and “perfect completeness” are generalizations of the notions 
of “consistency” and “completeness” in Zwarts (1996). 



(a) It is impossible for Q to be CC→CC and CC→SC. 

(b) It is impossible for Q to be SC→CC and SC→SC. 

(c) Q is CC→CC and SC→SC iff Q is self-dual and increasing. 

(d) Q is SC→CC and CC→SC iff Q is self-dual and decreasing. 

(e) Q is CC→CC and SC→CC iff Q is perfectly consistent. 

(f) Q is CC→SC and SC→SC iff Q is perfectly complete. 

Proof: 

(a) Suppose Q is CC→CC and CC→SC. Take an arbitrary Xi. For any particular set of 

X1, … Xi–1, Xi+1, … Xn, ║Q(X1, … Xi, … Xn)║ = 1 or 0. Let ║Q(X1, … Xi, … Xn)║ 

= 1. Since CC[Xi, ¬Xi], we have ║Q(X1, … ¬Xi, … Xn)║ = 0. Since CC[¬Xi, ∅], we 

then have ║Q(X1, … ∅, … Xn)║ = 1. But since CC[∅, Xi], we then have ║Q(X1, … 

Xi, … Xn)║ = 0. Thus, starting from ║Q(X1, … Xi, … Xn)║ = 1, we can derive 

║Q(X1, … Xi, … Xn)║ = 0. Similarly, starting from ║Q(X1, … Xi, … Xn)║ = 0, we 

can derive ║Q(X1, … Xi, … Xn)║ = 1. This contradiction shows that it is impossible 

for Q to be CC→CC and CC→SC. The proof of (b) follows a similar line of 

reasoning. 

 

(c) First let Q be CC→CC and SC→SC. Then since CC[Xi, ¬Xi] and SC[¬Xi, Xi], we 

have Q(X1, … Xi, … Xn) ⇒ ¬Q(X1, … ¬Xi, … Xn) and ¬Q(X1, … ¬Xi, … Xn) ⇒ 

Q(X1, … Xi, … Xn), respectively. Combining the above, we have Q(X1, … Xi, … Xn) 

⇔ ¬Q(X1, … ¬Xi, … Xn). By (17), Q = Qdi, i.e. Q is self-dual. Next, let ║Q(X1, … 

Xi, … Xn)║ = 1 and Xi ⊆ Xi’. Then since CC[Xi, ¬Xi’], we have ║Q(X1, … ¬Xi’, … 

Xn)║ = 0. But since SC[¬Xi’, Xi’], we have ║Q(X1, … Xi’, … Xn)║ = 1. Thus, Q is 

increasing. 

 

Next let Q be self-dual and increasing. Suppose ║Q(X1, … Xi, … Xn)║ = 1 and 

CC[Xi, Xi’]. Since Q is self-dual, i.e. Q = Qdi, by (17), we have ║¬Q(X1, … ¬Xi, … 

Xn)║ = 1. From CC[Xi, Xi’] we have Xi’ ⊆ ¬Xi. Since Q is increasing, by a standard 

result in GQT, ¬Q is decreasing and so we have ║¬Q(X1, … Xi’, … Xn)║ = 1, i.e. 

║Q(X1, … Xi’, … Xn)║ = 0. So Q is CC→CC. Similarly, one can prove that Q is also 

SC→SC, thus completing the proof of (c). The proof of (d) follows a similar line of 

reasoning. 

 

(e) First let Q be CC→CC and SC→CC. When Y is a subset of ¬Xi, we have CC[Xi, 

Y]. From this we have Q(X1, … Xi, … Xn) ⇒ ¬Q(X1, … Y, … Xn). When Y is a 

superset of ¬Xi, we have SC[Xi, Y]. From this we also have Q(X1, … Xi, … Xn) ⇒ 

¬Q(X1, … Y, … Xn). So by definition (41), Q is perfectly consistent. 

 



Next let Q be perfectly consistent and CC[Xi, Xi’]. By (26), Xi’ ⊆ ¬Xi. So by (41) we 

must have Q(X1, … Xi, … Xn) ⇒ ¬Q(X1, … Xi’, … Xn). Thus, Q is CC→CC. 

Similarly, one can prove that Q is also SC→CC, thus completing the proof of (e). The 

proof of (f) follows a similar line of reasoning. � 

 

From Theorem 8(a) and (b), we can deduce that it is impossible for any GQ to possess 

three or four of the OPs in the same argument. Therefore we need not consider these 

cases. 

 

According to Theorem 8(c) and (d), we can find GQs that are both CC→CC and 

SC→SC, or both SC→CC and CC→SC from among the self-duals identified in 

Keenan (2003, 2008). For example, since singular proper names are increasing 

self-duals, they are both CC→CC and SC→SC12. Moreover, according to Keenan 

(2003, 2008), (LESS THAN 1/2 OF) (where the left argument is odd) is a decreasing 

right self-dual, we thus know that this determiner is both SC→CC and CC→SC in the 

right argument. 

 

According to Theorem 8(e), we can find GQs that are both CC→CC and SC→CC 

from among perfectly consistent GQs. But what GQs are these? Among the GQs 

listed in Appendix 1, the absolute numerical and proportional GQs are in general not 

perfectly consistent, because their truth conditions are dependent on the cardinalities 

or proportionalities rather than the member composition of their arguments. For 

illustration, consider (EXACTLY 3/4 OF). Let me show that this determiner is not 

perfectly consistent in the right argument by constructing a counterexample. Define 

finite sets A and B such that ║(EXACTLY 3/4 OF)(A, B)║ = 1, i.e. |A ∩ B| / |A| = 

0.75. That means |A ∩ ¬B| / |A| = 0.25. Also define a subset X of A ∩ B such that |X| / 

|A| = 0.5. Since ¬B and X are disjoint, we must have |A ∩ (¬B ∪ X)| / |A| = 0.25 + 0.5 

= 0.75, and so we have ║(EXACTLY 3/4 OF)(A, ¬B ∪ X)║ = 1. This model shows 

that (EXACTLY 3/4 OF) is not perfectly consistent in the right argument. 

 

Thus, perfectly consistent GQs can only be found from among GQs that are not 

essentially numerical or proportional. It turns out that exceptive determiners, such as 

(ALL … EXCEPT X1, … AND Xn), whose truth conditions are in the form of a 

set-theoretic equation are such GQs. Since the truth of a set-theoretic equation 

depends on the membership composition of the sets involved, changing a set X to a 

subset or superset of ¬X will in general make a true equation become false. Consider 

                                                 
12 As for plural proper names, since a plural proper name can be represented by EVERY, for example, 
“John and Mary” can be represented by EVERY({j, m}), the OP in its unique argument is the same as 

that of EVERY in the right argument, i.e. a plural proper name is CC→CC in its unique argument. 



(ALL … EXCEPT X1, … AND Xn) as an example. Suppose ║(ALL … EXCEPT 

X1, … AND Xn)(A, B)║ = 1, then we have A – B = {x1, … xn}. That means {x1, … xn} 

is disjoint from B. So provided that A – {x1, … xn} ≠ ∅, we must have A – Y ≠ 

{x1, … xn}, where Y is any subset or superset of ¬B. Thus we conclude that (ALL … 

EXCEPT X1, … AND Xn) is perfectly consistent and is thus both CC→CC and 

SC→CC in the right argument on condition that A – {x1, … xn} ≠ ∅. In a similar 

fashion, one can conclude that (ALL … EXCEPT X1, … AND Xn) is both CC→CC 

and SC→CC in the left argument on condition that B ∪ {x1, … xn} ≠ U. 

 

Apart from the exceptive determiners, the identity comparative structured quantifier 

(THE SAME … AS …) is also perfectly consistent in its second and third arguments 

subject to different conditions. In what follows, we will prove that this GQ is perfectly 

consistent in the second argument on condition that A – (A ∩ B2) ≠ ∅. Let ║(THE 

SAME … AS …)(A, B1, B2)║ = 1, i.e. 

(43) A ∩ B1 = A ∩ B2 

This entails 

(44) A ∩ B2 ⊆ B1 

First suppose Y ⊆ ¬B1. Then we have A ∩ Y ⊆ ¬B1. Comparing this with (44), one 

can see that A ∩ Y ≠ A ∩ B2, i.e. ║(THE SAME … AS …)(A, Y, B2)║ = 0. Next 

suppose Y ⊇ ¬B1. On the one hand, by (44) above, we have 

(45) (A ∩ B2) ∩ ¬B1 = ∅ 

On the other hand, we have (A ∩ Y) ∩ ¬B1 = A ∩ ¬B1 (because ¬B1 ⊆ Y). Now A ∩ 

¬B1 ≠ ∅ because otherwise we would have A ⊆ B1, which is equivalent to A ∩ B1 = A. 

But then by (43) we would have A ∩ B2 = A, which contradicts the condition that A – 

(A ∩ B2) ≠ ∅. Based on the above, we have 

(46) (A ∩ Y) ∩ ¬B1 ≠ ∅ 

By (45) and (46), we conclude that A ∩ Y ≠ A ∩ B2, i.e. ║(THE SAME … AS …)(A, 

Y, B2)║ = 0. We have thus shown that (THE SAME … AS …)(A, B1, B2) ⇒ ¬(THE 

SAME … AS …)(A, Y, B2) where Y is any subset or superset of ¬B1. Hence, (THE 

SAME … AS …) is perfectly consistent in the second argument. 

 

In a similar fashion, one can prove that (THE SAME … AS …) is perfectly consistent 

in the third argument on condition that A – (A ∩ B1) ≠ ∅. By Theorem 8(e), (THE 

SAME … AS …) is both CC→CC and SC→CC in the second and third arguments 

subject to different conditions. Moreover, one can prove that (THE SAME … AS …) 

is SC→CC (on condition that B1 ≠ B2) and does not possess other OPs in the first 

argument (see Appendix 3 for the proof). The above fact can be succinctly represented 

as (THE SAME … AS …) ∈ –CC→CC++ ∩ +SC→CC++ (B1 ≠ B2; A – (A ∩ B2) ≠ 



∅; A – (A ∩ B1) ≠ ∅)13. 

 

Finally, regarding GQs that are both CC→SC and SC→SC, i.e. perfectly complete 

GQs, by Theorem 8(e), (f) and Theorem 1 we know that this kind of GQs can be 

found from the outer negations of perfectly consistent GQs. It turns out that there is 

only one such GQ listed in Appendix 1. This is the identity comparative structured 

quantifier (DIFFERENT … THAN …)14, which is the outer negation of (THE 

SAME … AS …). Thus, we have (DIFFERENT … THAN …) ∈ –CC→SC++ ∩ 

+SC→SC++ (B1 ≠ B2; A – (A ∩ B2) ≠ ∅; A – (A ∩ B1) ≠ ∅). 

 

The following exemplifies the fact that (ALL … EXCEPT X1, … AND Xn) is both 

CC→CC and SC→CC in the right argument on condition that A – {x1, … xn} ≠ ∅: 

(47) (Given that John and Mary are not the only members.) 

CC[“All members except John and Mary are teenagers”, “All members 

except John and Mary are elderly”] and CC[“All members except John and 

Mary are aged over 50”, “All members except John and Mary are aged below 

51”] 

 

The following table summarizes the OPs of the GQs listed in Appendix 115: 

 

    Table 1: OPs of some GQs 

 

OP Type GQ 

CC→CC+ plural proper names 

CC→CC+  

∩ SC→SC+ 

singular proper names 

–CC→CC+ MOST, (MORE THAN r OF) (1/2 ≤ r < 1), (AT LEAST r OF) 

(1/2 < r < 1), (EXACTLY r OF) (1/2 < r < 1), (BETWEEN q 

AND r OF) (1/2 < q < r < 1), (ALL EXCEPT r OF) (0 < r < 1/2) 

–CC→SC+ (LESS THAN r OF) (1/2 < r < 1), (AT MOST r OF) (1/2 ≤ r < 1) 

+SC→CC+ NO (B ≠ ∅; A ≠ ∅) 

–SC→CC+ (LESS THAN r OF) (0 < r ≤ 1/2), (AT MOST r OF) (0 < r < 1/2), 

(EXACTLY r OF) (0 < r < 1/2), (BETWEEN q AND r OF) (0 < 

                                                 
13 Since (THE SAME … AS …) has one nominal and two predicative arguments, there is one 
“+/–“ sign on the left and two “+/–“ signs on the right of the names of the OPs. 
14 According to Beghelli (1994), there is a “weak” version and a “strong” version of (DIFFERENT … 
THAN …). This paper only considers the “weak” version. 
15 Only those OP types with at least one o-sensitive argument are listed here. Thus, GQs listed in 
Appendix 1 that are not listed below are understood to be o-insensitive in all arguments. For example, 

(EXACTLY n) ∈ –CC→CC– ∩ –CC→SC– ∩ –SC→CC– ∩ –SC→SC–. 



q < r < 1/2), (ALL EXCEPT r OF) (1/2 < r < 1) 

+SC→SC+ SOME (B ≠ ∅; A ≠ ∅) 

–SC→SC+ (MORE THAN r OF) (0 < r < 1/2), (AT LEAST r OF) (0 < r ≤ 

1/2) 

–CC→CC+  

∩ –SC→SC+ 

(MORE THAN 1/2 OF) (|A| is odd) 

–SC→CC+ 

∩ –CC→SC+ 

(LESS THAN 1/2 OF) (|A| is odd) 

+CC→CC+  

∩ +SC→CC+ 

(ALL … EXCEPT X1, … AND Xn) (B ∪ {x1, … xn} ≠ U; A – 

{x1, … xn} ≠ ∅), (NO … EXCEPT X1, … AND Xn) (B – {x1, … 

xn} ≠ ∅; A – {x1, … xn} ≠ ∅) 

+SC→CC–  

∩ –CC→CC+ 

EVERY (B ≠ U; A ≠ ∅) 

+SC→SC–  

∩ –CC→SC+ 

(NOT EVERY) (B ≠ U; A ≠ ∅) 

–CC→CC++ ∩ 

+SC→CC++ 

(THE SAME … AS …) (B1 ≠ B2; A – (A ∩ B2) ≠ ∅; A – (A ∩ 

B1) ≠ ∅) 

–CC→SC++ ∩ 

+SC→SC++ 

(DIFFERENT … THAN …) (B1 ≠ B2; A – (A ∩ B2) ≠ ∅; A – (A 

∩ B1) ≠ ∅) 

 

    5. O-Sensitivities of Iterated GQs 

 

In the study of monotonicity inferences, one can determine the monotonicities of an 

iterated GQ based on the monotonicities of its constituent monadic GQs. This has 

been studied by van Benthem (1986), Sanchez Valencia (1991), van Eijck (2007), etc. 

For example, consider the following iterated GQ: 

(48) (AT MOST 1/2 OF)(A1, {x1: NO(A2, {x2: B(x1, x2)})}) 

Since A2 is within the left argument of NO and the right argument of (AT MOST 1/2 

OF), and both NO and (AT MOST 1/2 OF) are decreasing in both of their arguments, 

by a standard result in GQT, we know that A2 is increasing. 

 

In parallel to monotonicity inferences, we also hope to formulate a principle that 

determines the o-sensitivity of an iterated GQ based on those of its constituent 

monadic GQs. Before stating the principle, we first need a definition: 

(49) Let X be a predicate under an iterated GQ. Suppose X is within the ik
th 

argument of Qk (1 ≤ k ≤ n), ik–1
th argument of Qk–1, … i1

th argument of Q1, 

where Qk, Qk–1, … Q1 are constituent monadic GQs of the iterated GQ 

ordered from the innermost to the outermost layers. Then X has an OP-chain 



<Rk, Rk–1, … R0>, where each of Rk, Rk–1, … R0 is one of {CC, SC}, iff Qk is 

Rk→Rk–1 in the ik
th argument, Qk–1 is Rk–1→Rk–2 in the ik–1

th argument, … Q1 

is R1→R0 in the i1
th argument. 

 

For instance, in the argument structure of the iterated GQ given in (48), A2 is within 

the left argument of NO and the right argument of (AT MOST 1/2 OF). Since, 

according to Table 1, NO is SC→CC in the left argument on condition that its right 

argument is non-empty and (AT MOST 1/2 OF) is CC→SC in the right argument, A2 

has an OP-chain <SC, CC, SC> on condition that {x2: B(x1, x2)} ≠ ∅. One can also 

easily check that B has an OP-chain <SC, CC, SC> on condition that A2 ≠ ∅ while A1 

has no OP-chain. 

 

We now consider the case in which a predicate is not within the scope of any GQ / 

logical operator. Let X and X’ be predicates. A predicate not within the scope of any 

GQ / logical operator can be thought to be within the scope of the identity operator ι 
defined by ι(X) = X for any predicate X. Now it is obvious that if CC[X, X’], then 

CC[ι(X), ι(X’)]. The same is true for the case of SC[X, X’]. Thus, ι is CC→CC and 

SC→SC in its argument. We conclude that a predicate not within the scope of any GQ 

/ logical operator is CC→CC and SC→SC. 

 

We next consider the case in which a predicate is within the argument of some GQ / 

logical operator. We need the following theorems: 

Theorem 9 Let P be a predicate. Then {x: ¬P(x)} = ¬{x: P(x)}. 

Proof: For any member x of U, x ∈ {x: ¬P(x)} ⇔ ║¬P(x)║ = 1 ⇔ ║P(x)║ = 0 ⇔ x 

∉ {x: P(x)} ⇔ x ∈ ¬{x: P(x)}. Thus {x: ¬P(x)} = ¬{x: P(x)}. � 

 

Theorem 10 Let P and P’ be n-ary predicates and R be one of {CC, SC}, then 

R[P1, P2] ⇒ R[{xi: P(x1, … xi–1, xi, xi+1, … xn)}, {xi: P’(x1, … xi–1, xi, 

xi+1, … xn)}] for any 1 ≤ i ≤ n and any particular set of x1, … xi–1, 

xi+1, … xn. 

Proof: Here we only prove the case in which R = CC. The case in which R = SC is 

similar. Suppose CC[P, P’]. By (26), this is equivalent to P ⊆ ¬P’. Then for any set of 

x1, … xi–1, xi+1, … xn, and any particular xi, we have P(x1, … xi–1, xi, xi+1, … xn) ⇒ 

¬P’(x1, … xi–1, xi, xi+1, … xn), and so we have {xi: P(x1, … xi–1, xi, xi+1, … xn)} ⊆ {xi: 

¬P’(x1, … xi–1, xi, xi+1, … xn)}. Now by Theorem 9, {xi: ¬P’(x1, … xi–1, xi, xi+1, … xn)} 

= ¬{xi: P’(x1, … xi–1, xi, xi+1, … xn)}. Thus, by (26) again, we have CC[{xi: P(x1, … 

xi–1, xi, xi+1, … xn)}, {xi: P’(x1, … xi–1, xi, xi+1, … xn)}]. � 

 



With the above theorems, we can then conclude that a predicate is Rn→R0 if it has an 

OP-chain <Rn, … R0>. In what follows, we will provide a proof sketch for this 

important result. Suppose we have an iterated GQ in the following form: 

(50) Q1(A1, {x1: … Qn(An, {xn: B(x1, … xn)}) … }) 

We focus on the o-sensitivity of B (the o-sensitivities of other predicates can be 

similarly treated). Let B have an OP-chain <Rn, Rn–1, … R0> and Rn[B, B’]. By 

Theorem 10, we have Rn[{xn: B(x1, … xn)}, {xn: B’(x1, … xn)}] for any x1, … xn–1. 

Moreover, by definition (49), Qn is Rn→Rn–1 in {xn: B(x1, … xn)}, and so we have 

Rn–1[Qn(An, {xn: B(x1, … xn)}), Qn(An, {xn: B’(x1, … xn)})]. The above reasoning can 

be seen as a kind of “upward derivation”: from the Rn relation at the B-level, we 

derive the Rn–1 relation at the Qn-level. Now the process of determining the 

o-sensitivities of B is essentially a repetition of this upward derivation, i.e. from the 

B-level to the Qn-level, and then to the Qn-1 level, and then … After n rounds of 

derivation, we will finally derive the R0 relation at the Q1 level. The net effect is thus 

Rn[B, B’] ⇒ R0[Q1(A1, {x1: … Qn(An, {xn: B(x1, … xn)}) … }), Q1(A1, {x1: … Qn(An, 

{xn: B’(x1, … xn)}) … })], showing that B is Rn→R0. 

 

The above derivation relies on the condition that B has an OP-chain. This condition 

does not hold either when at least one of Q1, … Qn is o-insensitive, or when the OPs 

possessed by Q1, … Qn do not form a chain. In either case, the absence of the 

OP-chain blocks the upward derivation. With the above discussion and results, we can 

now formulate the following principle: 

(51) A predicate not within the scope of any GQ / logical operator is CC→CC and 

SC→SC. A predicate is Rk→R0 iff it has an OP-chain <Rk, … R0>. 

 

We next use the above principle to determine the o-sensitivities of predicates in a 

quantified statement with an iterated GQ. Consider (48) renumbered as (52) below: 

(52) (AT MOST 1/2 OF)(A1, {x1: NO(A2, {x2: B(x1, x2)})}) 

In the above, it has been found that A1 has no OP-chain whereas A2 and B both have 

the OP-chain <SC, CC, SC> subject to different conditions. Thus, according to (51), 

we know that A1 is o-insensitive, A2 is SC→SC on condition that {x2: B(x1, x2)} ≠ ∅ 

and B is SC→SC on condition that A2 ≠ ∅. From the above result, we can derive the 

following valid inference (by letting A1 = CLUB, A2 = AGED-OVER-50, A2’ = 

AGED-BELOW-51, B = ADMIT-AS-MEMBERS): 

(53) (Given that every club admits somebody as member.) 

SC[“At most 1/2 of the clubs admit nobody aged over 50 as member”, “At 

most 1/2 of the clubs admit nobody aged below 51 as member”] 

 



The derivation process of the principle in (51) is not exclusively valid for (50). In fact, 

(51) is also applicable to iterated GQs in a form different than (50). For example, 

consider the following: 

(54) NO(A ∩ {x: SOME(B, {y: C(x, y)})}, D) 

The above iterated GQ represents a quantified statement whose subject contains a 

relative clause which is another quantified statement. The intersection operator “∩” 

shows that relative clauses function like intersecting adjectives. Let’s determine the 

OP of the predicate B. Since B is within the left arguments of SOME and NO, which 

are SC→SC and SC→CC, respectively, both in its left argument on condition that its 

right argument is non-empty, B has an OP-chain <SC, SC, CC>. By (51), B is 

SC→CC subject to the condition that {y: C(x, y)} ≠ ∅ ∧ D ≠ ∅. From the above 

result, we can derive the following valid inference (by letting A = COMPANY, B = 

AGED-OVER-50, B’ = AGED-BELOW-51, C = EMPLOY, D = GO-BANKRUPT): 

(55) (Given that every company employed somebody and some company went 

bankrupt.) 

CC[“No company employing somebody aged over 50 went bankrupt”, “No 

company employing somebody aged below 51 went bankrupt”] 

 

Note that monotonicity inferences of iterated GQs are governed by the same principle 

as opposition inferences. If we represent increasing monotonicity as ≤→≤ or ≥→≥  

and decreasing monotonicity as ≥→≤ or ≤→≥, then we can define an analogous 

notion of “MON-chain” by replacing {CC, SC} with {≤, ≥} in (49) and modify the 

principle in (51) as: 

(56) A predicate not within the scope of any GQ / logical operator is increasing. A 

predicate is Rk→R0 iff it has a MON-chain <Rk, … R0>. 

This principle can then be used to determine the monotonicities of predicates under an 

iterated GQ. 

 

For illustration, consider (48) renumbered as (57) below: 

(57) (AT MOST 1/2 OF)(A1, {x1: NO(A2, {x2: B(x1, x2)})}) 

Let’s determine the monotonicity of A2. Now A2 is within the left argument of NO and 

the right argument of (AT MOST 1/2 OF), and both NO and (AT MOST 1/2 OF) are 

decreasing in both of their arguments. Thus, A2 has a MON-chain <≤, ≥, ≤> (or 

equivalently, <≥, ≤, ≥>) 16 . According to (56), we know that A2 is ≤→≤ (or 

equivalently ≥→≥), i.e. increasing. This result is in accord with that obtained at the 

                                                 
16 Note that since both increasing and decreasing monotonicities have two possible representations, the 
determination of MON-chains is more complicated than that of OP-chains. We may need to consider all 
possible representations of the monotonicities involved in order to determine whether a predicate has a 
MON-chain. 



beginning of this section. 

 

    6. GQs as Sets and Arguments 

 

As pointed out in Section 2, GQs can be seen as second-order sets and so they may 

enter into the CC and / or SC relations with other GQs. For example, it is easy to see 

that the following hold: 

(58) Within the domain {<A, B>: A ≠ ∅}, CC[EVERY, NO] ∧ SC[SOME, (NOT 

EVERY)] 

(59) CC[SOME, NO] ∧ SC[SOME, NO] 

 

Viewed as sets, a GQ not within the scope of any GQ / logical operator is both 

CC→CC and SC→SC according to (51). Based on (58) and (59), we can then derive 

the following contrary, subcontrary and contradictory relations in Classical Logic: 

(60) Given that A ≠ ∅, EVERY(A, B) ⇒ ¬NO(A, B) 

(61) Given that A ≠ ∅, ¬SOME(A, B) ⇒ (NOT EVERY)(A, B) 

(62) SOME(A, B) ⇔ ¬NO(A, B) 

Thus, the classical contrary, subcontrary and contradictory relations can be seen as 

special examples of the opposition inferences studied in this paper. 

 

Moreover, GQs viewed as sets may also act as arguments of other GQs / logical 

operators. For instance, consider (48) renumbered as (63) below: 

(63) (AT MOST 1/2 OF)(A1, {x1: NO(A2, {x2: B(x1, x2)})}) 

Since NO is within the right argument of (AT MOST 1/2 OF), which is CC→SC in 

the right argument, we know that NO is CC→SC in (63). Now by (58), we have 

CC[NO, EVERY] on condition that the left arguments of NO and EVERY are both 

non-empty. We can thus derive the following valid inference (by letting A1 = CLUB, 

A2 = LOGICIAN, B = ADMIT-AS-MEMBERS): 

(64) (Given that there is some logician.) 

SC[“At most 1/2 of the clubs admit no logician as members”, “At most 1/2 of 

the clubs admit every logician as members”] 

 

Particularly, since the negation operator “¬” is a logical operator, we may also discuss 

the o-sensitivity of this operator. We have the following theorem: 

Theorem 11 “¬” is CC→SC and SC→CC and does not possess other OPs. 

Proof: Suppose CC[X, X’]. Then by (28), we have SC[¬X, ¬X’], thus showing that 

“¬” is CC→SC. We next show that “¬” is not CC→CC by constructing a 

counterexample. Let X and 0 be a non-trivial member and the zero member of a 



Boolean algebra, respectively. Then we have CC[X, 0] (because X ≤ ¬0 for any X) 

but not CC[¬X, ¬0] (because ¬X > 0 for any non-trivial X). So “¬” cannot be 

CC→CC. The proofs that “¬” is SC→CC but not SC→SC are similar. � 

 

With this theorem, we can determine the o-sensitivities of predicates within the scope 

of “¬”. Consider the argument A2 in the following iterated GQ: 

(65) (LESS THAN 1/2 OF)(A1, {x1: SOME(¬A2, {x2: B(x1, x2)})}) 

Since A2 is within the scope of “¬”, the left argument of SOME and the right 

argument of (LESS THAN 1/2 OF), it has an OP-chain <CC, SC, SC, CC>. Therefore, 

A2 is CC→CC on condition that {x2: B(x1, x2)} ≠ ∅. Based on this result, we can 

derive the following valid inference (by letting A1 = CLUB, A2 = TEENAGER, A2’ = 

ELDERLY, B = ADMIT-AS-MEMBERS): 

(66) (Given that every club admits somebody as member.) 

CC[“Less than 1/2 of the clubs admit some non-teenager as member”, “Less 

than 1/2 of the clubs admit some non-elderly as member”] 

 

    7. Comparison with Monotonicity Inferences 

 

From the discussion above, one can see that there is a parallel relation between 

opposition inferences and monotonicity inferences in terms of the basic notions and 

principles governing the inferential patterns of these two types of inferences. More 

importantly, the definitions of the CC / SC relations in (26) are expressed in the form 

of subset relations, a characteristic relation in the definitions of monotonicities. In 

view of this, one may doubt whether opposition inferences can be treated as a subtype 

of monotonicity inferences. Yet the GQs have non-parallel patterns of monotonicities 

and o-sensitivities. Consider the proportional determiner (AT LEAST r OF) as an 

example. While this determiner has a uniform monotonicity throughout the whole 

range of 0 < r < 1 (i.e. it is non-monotonic in the left argument and increasing in the 

right argument within that range) according to a standard result in GQT, it has two 

different o-sensitivities within that range (i.e. it is –CC→CC+ for 1/2 < r < 1 

but –SC→SC+ for 0 < r ≤ 1/2) according to Table 1. 

 

In fact, despite the similarity between the definitions of the CC / SC relations and 

those of monotonicities, one cannot derive results for the o-sensitivities of a GQ by 

simply referring to its monotonicities. Reviewing the proof of the o-sensitivity in the 

right argument of (AT LEAST r OF) (i.e. Theorem 5), one can find that it contains 

steps using the properties of right inner negation and outer negation, as well as a step 

that makes use of a property of proportional determiners (i.e. deriving ║(LESS THAN 



r OF)(A, B’)║ = 1 from ║(AT MOST 1 – r OF)(A, B’)║ = 1 for 1/2 < r < 1). Note that 

these steps are not derivable from the right monotonicity of these determiners. Since 

the o-sensitivities of many other GQs depend on that of (AT LEAST r OF), we may 

thus conclude that o-sensitivities are independent of monotonicities, and opposition 

inferences are not subsumable under monotonicity inferences. 

 

The inferential relations derived from the OPs of GQs are often weaker than those 

derived from their monotonicities. For instance, by (26) the inferential relation in (39) 

can be rewritten as the following entailment: 

(67) At least 3/4 of the members are teenagers. ⇒ Less than 3/4 of the members 

are elderly. 

Although valid, the conclusion above seems too weak because if we make use of the 

relation TEENAGER ⊆ ¬ELDERLY, the right increasing monotonicity of (AT 

LEAST 3/4 OF) and the fact that the right inner negation of (AT LEAST 3/4 OF) is 

(AT MOST 1/4 OF), we can obtain the following sharper inference: 

(68) At least 3/4 of the members are teenagers. ⇒ At most 1/4 of the members are 

elderly. 

Thus, opposition inferences seem to generate weaker conclusions than monotonicity 

inferences. 

 

However, entailment is not the only type of inferential relations that is of interest in 

logical studies. In some situations, we do need to establish some other types of 

inferential relations (such as the CC / SC relation) between sets / propositions. 

Consider the following puzzle which is analogous to (3) above: 

(69) Three persons A, B and C each made a remark about the membership of a 

club. Suppose the club has some member, John is a member of the club and 

there is only one true statement among the three remarks. Which is the only 

true statement? 

A: Not all members of the club are teenagers. 

B: Not all members of the club are elderly. 

C: John is a teenager. 

Based on the fact that (NOT EVERY) is CC→SC in the right argument and 

CC[TEENAGER, ELDERLY], we may conclude that A’s and B’s remarks satisfy the 

SC relation, i.e. one of them must be true. Since there is only one true statement 

among the three, C’s remark must be false, i.e. John is not a teenager. This means that 

A’s remark must be true, because otherwise it contradicts the fact that John is not a 

teenager. Thus, we conclude that A’s remark is the only true statement. 

 



    8. Conclusion 

 

In this paper, we have developed a theory on a brand new type of quantifier 

inferences – opposition inferences. We have defined the basic notions associated with 

this type of inferences. We have also proposed and proved a number of theorems and 

the principle in (51) for determining the OPs of various types of GQs. 

 

The establishment of the theory on opposition inferences is an important 

generalization of the monotonicitiy inferences studied under modern GQT. While 

monotonicity inferences can be seen as involving three of the seven basic binary 

relations between sets / propositions defined in (25) above, namely equivalence, 

subalternation and superalternation, opposition inferences involve another three of 

those seven relations, namely contradictoriness, contrariety and subcontrariety17. An 

important point to note here is that subalternation, contradictoriness, contrariety and 

subcontrariety make up the four relations defined on the classical square of 

opposition 18 . Thus, the opposition inferences studied in this paper is also a 

generalization of the inferences related to the square of opposition. 

 

With the emergence of modern mathematical logic, some notions of Classical Logic 

such as the four relations defined on the square of opposition seem to have lost their 

importance in logical studies. But if we turn our attention from mathematical 

reasoning to natural language reasoning, we will find that these notions, when coupled 

with the powerful tools of GQT, will open up whole new areas of study to be explored 

by scholars. Opposition inferences constitute one such area and this paper has laid the 

foundation for the studies on this kind of inferences. Our next task is to extend the 

study to other GQs that have not been discussed in this paper. One group of such GQs 

includes the more complicated structured GQs that are studied in Beghelli (1994) but 

not listed in Appendix 1, such as (AT LEAST q MORE … THAN …), etc. Another 

group includes the non-iterated polyadic GQs that are studied in Keenan (1996) and 

Keenan and Westerståhl (2011). Moreover, in recent years, Zuber (2011, 2013) has 

begun to study some “generalized determiners”. The OPs of these polyadic GQs / 

generalized determiners may also be the next target of studies. 

 

    Appendix 1: Truth Conditions of some GQs 

 

                                                 
17 Since the seventh relation, i.e. loose relationship, is rather uninteresting, it will not play an important 
role in any studies on quantifier inferences. 
18 Also note that superalternation is just the converse of subalternation and equivalence is just the 
conjunction of subalternation and superalternation 



In what follows, m, n are natural numbers with 0 < m < n; q, r are rational numbers 

with 0 < q < r < 1; X1, … Xn are proper names representing individuals x1, … xn in 

the universe. 

 

Argument Structure Truth Condition 

(X1, … AND Xn)(B) {x1, … xn} ⊆ B 

EVERY(A, B) A ⊆ B 

(NOT EVERY)(A, B) A – B ≠ ∅ 

SOME(A, B) A ∩ B ≠ ∅ 

NO(A, B) A ∩ B = ∅ 

(ALL … EXCEPT X1, … AND Xn)(A, B) A – B = {x1, … xn} 

(NO … EXCEPT X1, … AND Xn)(A, B) A ∩ B = {x1, … xn} 

(MORE THAN n)(A, B) |A ∩ B| > n 

(FEWER THAN n)(A, B) |A ∩ B| < n 

(AT LEAST n)(A, B) |A ∩ B| ≥ n 

(AT MOST n)(A, B) |A ∩ B| ≤ n 

(EXACTLY n)(A, B) |A ∩ B| = n 

(BETWEEN m AND n)(A, B) m ≤ |A ∩ B| ≤ n 

(ALL EXCEPT n)(A, B) |A – B| = n 

MOST(A, B) |A ∩ B| > 0.5|A| 

(MORE THAN r OF)(A, B) |A ∩ B| > r|A| 

(LESS THAN r OF)(A, B) |A ∩ B| < r|A| 

(AT LEAST r OF)(A, B) |A ∩ B| ≥ r|A| 

(AT MOST r OF)(A, B) |A ∩ B| ≤ r|A| 

(EXACTLY r OF)(A, B) |A ∩ B| = r|A| 

(BETWEEN q AND r OF)(A, B) q|A| ≤ |A ∩ B| ≤ r|A| 

(ALL EXCEPT r OF)(A, B) |A – B| = r|A| 

(MORE … THAN …)(A1, A2, B) |A1 ∩ B| > |A2 ∩ B| 

(FEWER … THAN …)(A1, A2, B) |A1 ∩ B| < |A2 ∩ B| 

(EXACTLY AS MANY … AS …)(A1, A2, B) |A1 ∩ B| = |A2 ∩ B| 

(PROPORTIONALLY MORE … 

THAN …)(A1, A2, B) 
|A1 ∩ B| |A2| > |A2 ∩ B| |A1| 

(PROPORTIONALLY LESS … 

THAN …)(A1, A2, B) 
|A1 ∩ B| |A2| < |A2 ∩ B| |A1| 

(EXACTLY THE SAME PROPORTION 

OF … AS …)(A1, A2, B) 
|A1 ∩ B| |A2| = |A2 ∩ B| |A1| 

(THE SAME … AS …)(A, B1, B2) A1 ∩ B1 = A ∩ B2 



(DIFFERENT … THAN …)(A, B1, B2) A1 ∩ B1 ≠ A ∩ B2 

 

    Appendix 2: Some Counterexamples 

 

(a) Counterexample showing that (MORE … THAN …) and (PROPORTIONALLY 

MORE … THAN …) are neither CC→CC nor SC→CC in the first argument: U = {a, 

b, c, d, e, f}, A1 = {a, b, c}, A1’ = {d, e, f}, A2 = {c, d}, B = {a, b, e, f} 

 

(b) Counterexample showing that (MORE … THAN …) and (PROPORTIONALLY 

MORE … THAN …) are neither CC→CC nor SC→CC in the second argument: U = 

{a, b, c, d, e, f}, A1 = {b, e}, A2 = {a, b, c}, A2’ = {d, e, f}, B = {b, e} 

 

(c) Counterexample showing that (MORE … THAN …) and (PROPORTIONALLY 

MORE … THAN …) are not CC→CC in the third argument: U = {a, b, c, d, e, f}, A1 

= {a, d}, A2 = {e}, B = {a, c}, B’ = {d, f} 

 

(d) Counterexample showing that (MORE … THAN …) and (PROPORTIONALLY 

MORE … THAN …) are not SC→CC in the third argument: U = {a, b, c, d, e, f}, A1 

= {b, c, d, e}, A2 = {a, f}, B = {a, b, c, d ,e}, B’ = {b, c, d, e, f} 

 

(e) Counterexample showing that (EXACTLY AS MANY … AS …) and (EXACTLY 

THE SAME PROPORTION OF … AS …) are neither CC→CC nor SC→CC in the 

first argument: U = {a, b, c, d}, A1 = {a, b}, A1’ = {c, d}, A2 = {b, c}, B = {a, c} 

 

(f) Counterexample showing that (EXACTLY AS MANY … AS …) and (EXACTLY 

THE SAME PROPORTION OF … AS …) are neither CC→CC nor SC→CC in the 

third argument: U = {a, b, c, d}, A1 = {a, c}, A2 = {b, d}, B = {a, b}, B’ = {c, d} 

 

    Appendix 3: Proofs of two Propositions 

 

Proposition 1 (THE SAME … AS …) is decreasing in the first argument. 

Proof: Let A’ ⊆ A and ║(THE SAME … AS …)(A, B1, B2)║ = 1, i.e. 

(70) A ∩ B1 = A ∩ B2 

We will show that (THE SAME … AS …) is decreasing in the first argument by 

proving that 

(71) A’ ∩ B1 = A’ ∩ B2 

Let x ∈ A’ ∩ B1. Since A’ ⊆ A, we must have x ∈ A ∩ B1. From (70), we have x ∈ A 

∩ B2. We have thus shown that x ∈ A’ ∧ x ∈ B2, i.e. x ∈ A’ ∩ B2. Since x is arbitrary, 



we have A’ ∩ B1 ⊆ A’ ∩ B2. Similarly, we can also show that A’ ∩ B2 ⊆ A’ ∩ B1. 

Combining the above, we have (71) and hence the proposition is proved. � 

 

Proposition 2 (THE SAME … AS …) is SC→CC (on condition that B1 ≠ B2) and 

does not possess other OPs in the first argument. 

Proof: We will prove that (THE SAME … AS …) is SC→CC (on condition that B1 ≠ 

B2) by contradiction. So let SC[A, A’] and ║(THE SAME … AS …)(A, B1, B2)║ = 

║(THE SAME … AS …)(A’, B1, B2)║ = 1, i.e. 

(72) A ∩ B1 = A ∩ B2 

(73) A’ ∩ B1 = A’ ∩ B2 

From SC[A, A’], we have ¬A ⊆ A’. By Proposition 1, if the set A’ in (73) is replaced 

by any of its subset, the equality still holds. Thus, from (73) we have 

(74) ¬A ∩ B1 = ¬A ∩ B2 

Now B1 and B2 can be rewritten as 

(75) B1 = (A ∩ B1) ∪ (¬A ∩ B1) 

(76) B2 = (A ∩ B2) ∪ (¬A ∩ B2) 

From (72), (74), (75), (76), we would then have B1 = B2, which contradicts the 

condition that B1 ≠ B2. We have thus shown that CC[(THE SAME … AS …)(A, B1, 

B2), (THE SAME … AS …)(A’, B1, B2)]. Hence, (THE SAME … AS …) is SC→CC 

in the first argument. 

 

We next prove that (THE SAME … AS …) does not possess other OPs. First, by 

Theorem 8(b), we can immediately conclude that this GQ is not SC→SC in the first 

argument. To prove that (THE SAME … AS …) is neither CC→SC nor CC→CC in 

the first argument, we may construct counterexamples. First, consider the model: U = 

{a, b, c, d, e, f}, A = {a, b}, A’ = {c, d}, B1 = {a, c, e}, B2 = {b, d, f}. Then we have 

CC[A, A’] and ║(THE SAME … AS …)(A, B1, B2)║ = ║(THE SAME … AS …)(A’, 

B1, B2)║ = 0. This model thus shows that (THE SAME … AS …) is not CC→SC in 

the first argument. Finally, consider the model: U = {a, b, c, d, e, f}, A = {a, b}, A’ = 

{c, d}, B1 = {a, c, e}, B2 = {a, c, f}. Then we have CC[A, A’] and ║(THE SAME … 

AS …)(A, B1, B2)║ = ║(THE SAME … AS …)(A’, B1, B2)║ = 1. This model shows 

that (THE SAME … AS …) is not CC→CC in the first argument. � 
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