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Abstract. In this paper, | will develop a semantic model for interrogatives, an
important sentence type expressing a special aspect of uncertainty. The model is
based on the notions of generalized quantifiers and bilattices, and is used to
model several aspects of interrogative semantics, including resolvedness condi-
tions, answerhood, exhaustivity and interrogative inferences. It will be shown
that the semantic model satisfies a number of adequacy criteria.
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1 Introduction

Interrogatives are an important sentence type in natural language expressing a special
aspect of uncertainty. Yet the study on interrogatives in logic and formal semantics
has been a difficult task because classical logical and formal semantics are basically
truth conditional while there is not an intuitive and uncontroversial notion of truth
values for interrogatives. While the topic of interrogatives seems to be a linguistic
one, some scholars (such as [2], [6]) have studied this topic from the perspectives of
logic and formal semantics and have identified a number of aspects for study. The
aspects studied in this paper, i.e. resolvedness, exhaustivity, answerhood, interroga-
tive inferences, are the standard ones in the studies on interrogatives. A good sum-
mary of these aspects can be found in [6].

According to [11], an adequate semantic model for interrogatives should satisfy the
following adequacy criteria: 1. material adequacy — semantic notions of answerhood,
entailment and equivalence should be definable under the model; 2. formal adequa-
cy — the semantic notions should be interpretable as set-theoretic relations / opera-
tions; 3. empirical adequacy — the semantic notions should correspond to native
speaker intuitions. What this criterion in fact meant according to [11] is that certain
inferential relations that are intuitively correct should be provable under the model.
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In this paper, | will propose a semantic model that satisfies the aforesaid adequacy
criteria. This model combines elements from a framework developed by [7, 8] that is
based on generalized quantifiers (GQs) and a framework developed by [10, 11] that is
based on bilattices. In Section 2, | will review the basic ideas proposed in [7, 8] and
[10, 11], and point out some of their merits and demerits, and the need for enhancing
and combining the frameworks. In Section 3, | will introduce the enhanced model and
discuss the formal semantics of various types of interrogatives. In Section 4, | will
discuss the issue of interrogative inferences. In Section 5, | will conclude the paper by
discussing how the adequacy criteria are satisfied by my model.

2 Two Previous Models on Interrogatives

According to [5], the semantic frameworks for interrogatives may be classified into
two broad approaches — the Categorial Approach and the Propositional Approach.
Under the Categorial Approach, an interrogative is seen as an incomplete object, i.e. a
function, which requires a constituent answer for completion. Since different constit-
uent answers correspond to different semantic types, this approach does not assume a
uniform type for interrogatives.

The semantic framework developed by [7, 8] is an example of the Categorial Ap-
proach. This framework is based on the Generalized Quantifier Theory (GQT)* and
views WH-words as a special type of GQs, i.e. interrogative quantifiers (1Qs). In a
nutshell, a GQ can be seen as a second-order predicate with ordinary sets as argu-
ments. The semantics of a GQ can be delineated by its truth condition expressed as a
set-theoretic relation. For example, every can be seen as a GQ with 2 sets as argu-
ments satisfying the truth condition ||every(A, B)|| =t < A < B Different from
ordinary GQs, 1Qs have an additional argument corresponding to the answer to the
interrogative. The purpose of this answer argument is to make the interrogaive be-
come a proposition. For example, under this framework, the truth condition of which
can be represented by ||which(A, B, X)|| =t < A n B = X3, where X is the answer
argument. This truth condition says that ‘X’ is the answer to the interrogative “Which
‘Ais ‘B iffAnB=X"

This paper adopts the standard notation as used in [12] for denoting quantified statements.
Using this notation, a quantified statement such as “Every boy sang” is represented by eve-
ry(BOY, SING), where every (in italics) is a quantifier with BOY and SING as arguments.
Here the sets BOY and SING are semantic denotations of “boy” and “sang”, respectively.

In this paper, | use ||s|| to denote the truth value of a proposition / question s and “t” to
denote the truth value “true”.

Strictly speaking, according to [7, 8], the truth condition of which should involve a context
set because the interpretation of which is dependent on context. For simplicity, | have ig-
nored the context-dependent effect of which in this paper.

In this paper, I use ‘S’ to denote the natural language word / phrase corresponding to the set
S. 1 also use ‘s’ to denote the natural language declarative / interrogative sentence corre-
sponding to the proposition / question s.



Contrary to the Categorial Approach, the Propositional Approach assumes that in-
terrogatives are of one uniform type and the semantic type of interrogatives is to be
analysed in terms of propositions.

The semantic framework developed by [10, 11] is an example of the Propositional
Approach. This framework adopts the language of First Order Logic augmented by
the symbol “?” for forming questions. Semantically, this framework adopts a bilattice
model. According to [1], a bilattice is an algebraic structure composed of two com-
plete lattices ordered separately but sharing a common negation operator “-”, such
that “=” reverses the order in one constituent lattice but preserves the order in the
other. Now the framework developed by [10, 11] assumes a uniform type for both
declarative and interrogative sentences. The denotation of declaratives and interroga-
tives are thus both truth values. However, to distinguish declaratives and interroga-
tives, they distinguish 2 subsets of truth values. For declaratives, there are 3 truth
values: t (“known to be true”), f (“known to be false”) and uk (“unknown whether
true or false”). For interrogatives, they borrow the concept of “resolvedness” from [4]
and assume 2 truth values: r (“resolved”) and ur (“unresolved”). These 5 truth values
thus form a bilattice composed of a declarative lattice and an interrogative lattice. The
declarative lattice is ordered by f < uk <t and the interrogative lattice ordered by ur <
r. Obviously, “~” reverses the order in the declarative lattice because if p; and p, are
propositions and ||ps|| < [|pz||, then ||-p2|| < ||-p1|- As for the negation of inter-
rogatives, the discussion will be postponed to Section 4.

Under this framework, the semantics of interrogatives is expressed by the
resolvedness conditions which relate the two groups of truth values. For illustration,
consider the polar interrogative “Did Mary kiss John?”. The formal representation and
resolvedness condition of this interrogative is || 2(KISS(m, j))||= r iff ||KISS(m, j)||
e {t, f}, which means this polar interrogative is resolved iff it is known whether Mary
kissed John.

Compared with the GQT framework developed by [7, 8], the bilattice framework
developed by [10, 11] has some merits. Since their framework has a clear definition
for truth values of both declaratives and interrogatives, it is straightforward to define
entailment and equivalence relations between interrogatives and is thus convenient to
study the issue of interrogative inferences under this model. On the other hand, inter-
rogatives are interpreted as functions under the GQT framework. Although we may
define entailment as set inclusion (note that functions can be seen as sets), this defini-
tion is only applicable to objects of the same category. Since interrogatives may be-
long to different categories, it is not clear how to come up with an appropriate defini-
tion for the general entailment relation between interrogatives.

Nevertheless, the bilattice framework developed by [10, 11] can only deal with a
very small set of WH-words because it uses only one operator “?x” for WH-
interrogatives. This is in sharp contrast with the GQT framework developed by [7, 8]
which has defined a whole range of 1Qs for different WH-words. Thus, in comparison
with the bilattice framework, the GQT framework has greater expressive power. It is
also an attractive model because WH-words do share certain characteristics with ordi-
nary GQs. In fact, in the GQT literature, WH-words are sometimes seen as a subtype



of quantifiers. Moreover, it is also found that 1Qs possess certain properties that are
thoroughly studied in GQT, such as conservativity, monotonicity, intersectivity, etc.

Given the merits and demerits of the aforesaid two frameworks, | will propose a
novel semantic model for interrogatives that combines the merits and avoids the de-
merits of the two frameworks. Moreover, this semantic model will also deal with
certain phenomena that are not dealt with in the two frameworks, such as non-
exhaustive interrogatives and certain types of interrogative inferences.

3 A Novel Semantic Model for Interrogatives

3.1  Strongly Exhaustive 1Qs

The novel semantic model will adopt a bilattice structure that distinguishes 5 truth
values as described in Section 2. Apart from this, we need some additional defini-
tions. Under a 2-valued universe, with respect to every concept we have two comple-
mentary sets, e.g. X and =X. But under a 3-valued universe, we need 3 notions: X, X;
and Xy, with the following definitions (in what follows, U denotes the universe or
domain of discourse):

Xi={x e U: [|x e X| =t} 1)
Xe={x e U: |x e X|| =1} )
Xuw={x € U: ||x e X|| = uk} (3)

Thus, X;, X¢ and X, are sets containing elements that are known to belong to X,
known not to belong to X and unknown whether to belong to X, respectively.

We now consider WH-interrogatives. Following [7, 8], | will treat these interroga-
tives as quantified statements containing 1Qs. But contrary to [7, 8], | do not employ
the notion of “answer arguments” and will treat 1Qs in the same way as ordinary GQs.
For instance, since in everyday use, “which” is used with a noun phrase and a verb
phrase, such as in “Which boy sang?”, which will be treated as an 1Q with 2 argu-
ments, just like the ordinary GQ every. Thus, the WH-interrogative “Which boy
sang?” will be expressed as which(BOY, SING). In this way, 1Qs are similar to ordi-
nary GQs as they function as second-order predicates with ordinary sets as arguments.
Moreover, just like ordinary GQs, the semantics of 1Qs will be delineated by their
truth conditions (or more precisely, resolvedness conditions) expressed as set-
theoretic relations.

How can we derive the resolvedness condition of an 1Q like which? Before answer-
ing this question, I need to introduce the notion of “exhaustivity”, which is concerned
with what constitutes an acceptable answer to a certain interrogative. From the litera-
ture, we can identify two most important types of exhaustivity: strong exhaustivity
and non-exhaustivity. While non-exhaustivity only requires the answer to contain
some true and no false information requested by the interrogative, strong exhaustivity
requires the answer to contain all and only (i.e. exactly) the true information. In other
words, strongly exhaustive answers differ from non-exhaustive ones in that the former



are unique while the latter are not. For example, if it is known that John and Bill are
exactly the boys who sang, then “John and Bill and no other boys” would be a strong-
ly exhaustive answer to the interrogative “Which boy sang?”. Since strong
exhaustivity is easier to handle and is assumed by the most important theories on
interrogatives, including [7, 8] and [10, 11], the simplest IQs are interpreted as strong-
ly exhaustive 1Qs in this paper.

Under the strongly exhaustive interpretation, we know the answer to the interroga-
tive “Which boy sang?” iff for every element x of U, we know whether x is a boy who
sang. In other words, there is no element x such that we do not know whether x is a
boy who sang. Thus, the resolvedness condition of “Which boy sang?” can be written
as ||which(BOY, SING)| =r < (BOY n SING)y = @. This condition reflects the
following intuition: (BOY m SING), represents the area of uncertainty with respect
to the interrogative “Which boy sang?”. If this area is empty, then the uncertainty
does not exist and the interrogative is thus resolved.

The resolvedness conditions of which and some other commonly used strongly ex-
haustive 1Qs can be generalized as follows®:

||which(A, B)|| =r < (AN B)w=2 (4)

|| all except which)(A, B)|| =r < (A-B)w =2 (5)
|who(B)|| =r < (PERSON N B)y = & (6)

|| (everybody except who)(B)|| = r <> (PERSON - B)y = & (7)

Note that the right-hand side of the above all have the form Sy = & for an appropriate
set S.

The semantics of 1Qs is more complicated than other GQs in that one does not only
need to study the resolvedness conditions but also the resolved answers of 1Qs. For a
typical WH-interrogative, the resolved answer may take two forms. The short form
appears as a noun phrase. This form is called the constituent answer (CA). The full
form appears as a complete sentence. This form is called the sentential answer (SA).

For strongly exhaustive 1Qs, it is easy to specify the semantic denotations of their
CAs, as the form they take is closely related to their resolvedness conditions. For
example, provided that || which(BOY, SING)|| = r, we have (BOY N SING)y = &,
and the semantic denotation of the CA to “Which boy sang?” is then (BOY n SING),,
i.e. all those entities who are known to be boys who sang. We can generalize the
above: let g be a strongly exhaustive question whose resolvedness condition has the
form Sy = &, then the semantic denotation of the CAto ‘q’ is S;.

Moreover, since SA is just the result of writing a CA in the form of a complete sen-
tence, we can express the semantic denotation of an SA by making use of this relation
as follows: let q be a strongly exhaustive question whose resolvedness condition has

® Due to limited space, only the resolvedness conditions of a handful of 1Qs are given in this

paper. The resolvedness conditions of other 1Qs may be derived in a similar fashion, alt-
hough one needs to define some additional notions or domains for some 1Qs, such as a “pos-
session” predicate for whose, a spatial domain for where, etc.



the form Sy = &, then the semantic denotation of the SA to ‘q’ is the proposition S =
St. Note that this proposition can often be re-expressed in the standard form as appears
in the GQT literature by using the truth conditions of GQs. For illustration, suppose in
a universe all entities who are known to be boys who sang are John and Bill, i.e.
(BOY n SING), = {j, b}, and suppose (BOY n SING)y = <. Then the semantic de-
notation of the SA to “Which boy sang?” is the proposition BOY n SING = {j, b},
which can be re-expressed as (no ... except {j, b})(BOY, SING)°. This expression
corresponds to the natural language sentence “No boy except John and Bill sang”.

An advantage of modeling WH-words as quantifiers is that we can derive the
resolvedness conditions of WH-interrogatives involving predicates with an arity of 2
or higher by applying certain established operations in GQT. Under GQT, a sentence
containing a higher-arity predicate can be viewed as containing a polyadic quantifier.
There is an important subtype of polyadic quantifiers, called iterated quantifiers,
whose truth conditions can be derived by using an operation called “iteration”. For
example, consider the sentence “Every boy loves every girl” which contains a binary
predicate “loves”. The truth condition of this sentence can be expressed as:

|| every(BOY, {x: every(GIRL, {y: LOVE(x, y))})| =t < BOY c {x:  (8)
GIRL < {y: LOVE(X, Y)}}

The above formula says that “Every boy loves every girl” is true iff every boy X is
such that for every girl y, x loves y.

A WHe-interrogative containing a higher-arity predicate can be treated in a similar
fashion. For illustration, consider the interrogative “Which girl does every boy love?”.
According to the literature, this interrogative has at least 2 different readings: an indi-
vidual reading and a pair-list reading. In this paper, | will only consider the individual
reading, which can be paraphrased as “Which girl is such that every boy loves her?”’.
Using iteration, one can easily derive the resolvedness condition of this reading as:

| which(GIRL, {y: every(BOY, {x: LOVE(xx, Y| =r < (GIRL~ {y:  (9)
BOY < {x: LOVE(X, Y)}Nw =9

The above formula says that “Which girl does every boy love?” is resolved iff there is
no entity y such that it is not known whether y is a girl and is loved by every boy.

3.2 Non-Exhaustive 1Qs

Apart from “strongly exhaustive” interrogatives requesting complete information
concerning a subject matter, there are also ‘“non-exhaustive” interrogatives which
request only partial information. [3] listed certain markers in natural languages and

6 According to the standard GQT literature, the truth condition of the GQ “(no ... except
C)(A, B)” where C is a non-empty set of individuals manifested as (conjoined) proper
names is ||(no ... except C)(A, B)|| =t AnB=C.

To handle the pair-list reading properly, we need more notions which are definable under
the semantic model developed in this paper.
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pointed out that interrogatives with these markers have inherent exhaustivity. For
instance, “for example” is a marker of non-exhaustivity as exemplified by the inter-
rogative “Which boy sang, for example?”. In this paper, WH-phrase “which ... for
example” will be expressed as a non-exhaustive 1Q (at least which). A non-exhaustive
WH-interrogative such as “Which boy sang, for example?” is resolved in two mutual-
ly exclusive situations: (1) at least one member of U is known to belong to BOY n
SING; (2) all members of U are known not to belong to BOY n SING. Thus, the
resolvedness condition can be written as || (at least which)(BOY, SING)|| = r <
(BOY N SING); = & v (BOY n SING); = U. Note that situations (1) and (2) are rep-
resented by the two disjuncts on the right-hand side of this resolvedness condition.
Generalizing the above discussion, the resolvedness conditions of two non-exhaustive
1Qs are given below:

|| (at least which)(A, B)|| =r < (AN B)= 3 v (ANB)=U (10)
|| (at least who)(B) || =r <> (PERSON n B),# @ v (PERSON nB);=U  (11)

Next I derive the semantic denotation of the CA to the non-exhaustive interrogative
“Which boy sang, for example?”. Since the CA to a non-exhaustive interrogative is
not unique, | will provide the set of the semantic denotations of all possible CAs,
called the CA set, as follows:

{X: X  (BOY N SING) A X% if (BOY N SING) % &
CAset = @}, (12)
{2}, if (BOY N SING);= U

The above piecewise-defined function provides the CA set under two mutually exclu-
sive situations. If (BOY m SING); = U, no boy sang and so the unique CA should be
“none of them”, represented by a set consisting of & as the unique member. If (BOY
N SING); # ), then every non-empty subset of (BOY n SING),, i.e. any set X satis-
fying X < (BOY n SING); A X # {J, is the semantic denotation of an acceptable CA.
So all these Xs are collected into a set, and the CA can be represented by any member
of this set. For illustration, suppose (BOY  SING), = {j, b}, then the CA set is {{j},
{b}, {j, b}}, i.e. any one of “John”, “Bill” and “John and Bill” is an acceptable CA to
the non-exhaustive interrogative “Which boy sang, for example?”.

Similar to CA, the SA to “Which boy sang, for example?” is also not unique and
may be represented by a set of propositions, called the SA set, as shown below:

{X c BOY N SING: X c (BOY if (BOY N SING), = &
SA set = N SING); A X = T}, (13)

{BOY N SING = &}, if (BOY n SING);= U

For illustration, suppose (BOY n SING), = {j, b}, then the SA set is {{j} < BOY n
SING, {b} < BOY n SING, {j, b} < BOY n SING}, i.e. any one of the sentences
“John sang”, “Bill sang” and “John and Bill sang” is an acceptable SA to the non-
exhaustive interrogative “Which boy sang, for example?”.



It is not hard to generalize (12) and (13) to a general non-exhaustive question g
whose resolvedness condition has the form S; = & v S¢ = U for an appropriate set S.
All we need to do is replace the set BOY n SING in (12) and (13) by S.

3.3 Polar Interrogatives

In this subsection I will discuss polar interrogatives. | propose that a polar interroga-
tive be represented by whether(p) where whether is a Boolean operator asking for the
truth value of p, where ‘p’ is the declarative associated with the polar interrogative. In
this respect, whether is similar to the unary Boolean operator “=”. While the latter
may be manifested as “It is not the case that”, the former may be manifested as “Is it
the case that”. For example, since the declarative associated with the polar interroga-
tive “Does John love Mary?” is “John loves Mary”, the formal representation of this
polar interrogative is whether(LOVE(j, m)).

Since a polar interrogative is resolved iff its associated declarative is known to be
true or false, we can easily write down the resolvedness conditions for polar inter-
rogatives:

|whether(p)|| =1 < ||p|| = uk (14)

I next determine the semantic denotations of the CA and SA to a polar interroga-
tive. For a polar question whether(p), the semantic denotation of its CA can be easily
written down as ||p||. In English, ||p|| can be represented by particular words, such
as “yes” (corresponding to || P " = t) and “no” (corresponding to ||p || = f). As for the
semantic denotation of the SA to a polar interrogative, it can be expressed as

_ _ p. ifpf =t
Semantic denotation of SA = (15)

. iftflpll =t

4 Interrogative Inferences

To study interrogative inferences, we need to define entailment and equivalence rela-
tions involving questions. Under the present framework, it is straightforward to define
these notions. First, we define the notion of entailments: let S = {s,, ... s,} be a set of
questions / propositions (called the premises) and q a question (called the conse-
quence), then S entails q (denoted S = q) iff in every model, if ||| e {t r}
and ... [|sa|| € {t, 3, then ||q|| =r.

Next we define the notion of equivalence: let q; and g, be questions, then q; is
equivalent to g (denoted q; <> qy) iff in every model, ||q.|| = rif and only if ||g.| =
r.



4.1 Interrogative Entailments

Based on the resolvedness conditions of 1Qs and the above definitions, we can derive
valid inferential patterns of 1Qs. We first consider some basic entailments:

which(A, B) = (at least which)(A, B) (16)
which(A, B) = whether(some(A, B)) a7

These two entailments are in accord with our intuition. For example, if we know the
answer to the strongly exhaustive interrogative “Which boy sang?”, we automatically
know an answer to the non-exhaustive interrogative “Which boy sang, for example?”
as well as the answer to the polar interrogative “Did any boy sing?”.

To prove (16) and (17), we first assume that ||which(A, B)|| =t. By (4), this is true
iff (A N B)y =, ie forallx e U, |x € AnB| is either equal to t or f. From this
we can deduce that either there is an x such that || xe AnB || =1, or for all x, " X €
A ~ B|| =f, which is equivalent to the following two propositions:

(AnNBy=DVv(ANB)=U (18)
|[AnB=2| =tv|AnB=2| =f (19)

From (18) we can then deduce ||(at least which)(A, B)| = r by (10) and thus com-
plete the proof of (16). From (19) we can then deduce | A N B # &|| = uk. By (14),
we have || whether(some(A, B)) || = r and thus complete the proof of (17) since A N B
# (J is the truth condition of some(A, B), according to the GQT literature.

Apart from inferences with only one premise, we may also consider interrogative
inferences with more than one premise, such as the following:

{which(C, B), which(C, A), A  C} = which(A, B) (20)

Note that (20) is a generalization of a result in [5]. An instance of this inference
schema is that the two questions “Which child does Mary teach?”” and “Which child is
a boy?” collectively entail the question “Which boy does Mary teach?” (on the under-
standing that boys are children).

To prove (20), we first write down the resolvedness conditions of the first two
premises:

(CAB)w=03, (CNAW=D 1)

We then observe that (C N B) n (C n A) = A n B, given the third premise A < C.
Next we need to apply the following result:

For any sets A and B, (A N B)y < Ak U B (22)

(22) can be proved as follows: let X € (A N B)y, then ||x € A~ B|| = uk. This im-
plies that ||x € Al = uk or ||x € B|| = uk. But this is equivalent to x € Ay or x €
Buk, i.e.xe Au U By



Combining the above results, we have (A N B)y < (C n B)uw v (C n A)y. By (21)
we have (A N B)y = T U &, i.e. (A N B)y = . The consequence of (20) thus ob-
tains.

Monotonicity inferences constitute a special subtype of entailments. Monotonicity
is concerned with truth preservation of a quantified statement when the arguments of
the statement are replaced by their supersets / subsets. Here are the definitions of in-
creasing and decreasing monotonicities: let Q(Xy, ... X,) be a GQ with n arguments,
then Q is increasing in the if argument (1 <i < n)iff forall Xy, ... X, X, ... X, such
that X; = Xi’, Q(X4, ... Xi, ... Xn) = Q(Xy, ... Xi', ... X»). Q is decreasing in the i"
argument iff for all Xy, ... Xj, Xi’, ... X, such that X; o Xy, Q(Xy, ... Xj, ... X)) =
Q(Xy, ... Xi’, ... X,). Q is called monotonic in the i argument iff it is either increas-
ing or decreasing in the i™ argument. Otherwise, it is called non-monotonic in the i™"
argument.

By treating WH-words as quantifiers, we may also talk about the monotonicities of
WH-words. But the basic results turn out to be negative. First, according to the defini-
tion of entailments, “Which boy sang?” does not entail “Which boy sang Auld Lang
Syne?”. The point is that even if you know exactly who sang, you may still not know
exactly who sang Auld Lang Syne, because the latter interrogative requires more in-
formation than the former. In fact, we can show that®

Proposition 1  All strongly exhaustive 1Qs studied in this paper are non-
monotonic in all of their arguments.

Here I will only prove which is not decreasing. The remaining part of the proof and
the proofs for other strongly exhaustive 1Qs are similar. | construct a counterexample
model. Let U = A;={a, b, c}, A= Ay =9, B, ={b, c}, Bf = {a}, B’ = {b}, B’s =
{a}, B’ ={c}. It is obvious that this model satisfies B o B’ and (A " B)y = &. Thus,
according to (4), ||which(A, B)|| = r. But since (A n B*), # &, we have ||which(A,
B”)|| = ur. The above fact shows that which is not decreasing.

I next consider the non-exhaustive 1Qs. According to (10) and (11), the
resolvedness condition of each of these 1Qs is composed of two disjuncts. Due to this
complexity, it turns out that all these 1Qs are in general non-monotonic in all of their
arguments. For example, from the fact that all boys are children, we cannot deduce
the following entailment:

(at least which)(BQOY, SING) = (at least which)(CHILD, SING) (23)

because it may be the case that the children in question consist of boys and girls, and
it is known that no boy sang, while it is not known whether there was any girl who
sang. In this case, the premise is resolved, but the consequence is not. The invalidity
of (23) is mainly due to the fact that the resolvedness condition of the premise of (23)

&  As a matter of fact, [7] contended that all 1Qs are decreasing. But his conclusion is based on

his special definitions for monotonicities of 1Qs, which look very different from the usual
definitions for monotonicities as used in the GQT literature. | thus do not adopt his defini-
tions and obtain a different conclusion.



is composed of two disjuncts: “either at least one boy is known to have sung, or it is
known that no boy sang”. If we now discard the second disjunct, then the resulting
premise entails that at least one child is known to have sung. Thus in this case, (23) is
valid.

The above discussion shows that the non-exhaustive 1Qs are in general non-
monotonic, but may become increasing in certain specific cases. In fact, we have:

Proposition 2 Within the domain {<A, B>: (A n B); = U}, (at least which) is
increasing in both of its arguments, whereas within the domain {B:
(PERSON N B); = U}, (at least who) is increasing in its unique
argument.

Here | will only prove that within the domain {<A, B>: (A n B); = U}, (at least
which) is increasing in A. The remaining part of the proof and the proof for (at least
who) is similar. Suppose ||(at least which)(A, B)|| =rand A c A’. According to (10),
within the given domain, ||(at least which)(A, B)|| = r iff (A N B), # &. So we must
have (A” N B), # @. This implies that || (at least which)(A’, B)|| = r, thus showing
that (at least which) is increasing in A.

4.2  Interrogative Equivalences

Based on the definition of equivalences and the resolvedness conditions of 1Qs, we
can easily derive (and prove) simple equivalences between 1Qs such as the following:

who(B) < which(PERSON, B) (24)
which(A, -B) < (all except which)(A, B) (25)

These two equivalences are in accord with our intuition that “Who sang?” has the
same meaning as “Which person sang?””°, whereas “Which boy did not sing?” has the
same meaning as “All except which boy sang?”

The equivalence in (25) involves “inner negation”, i.e. negation on an argument of
the 1Q. We now consider the notion of “outer negation”, i.e. negation of a question,
and see if we can derive any equivalence™. Our first problem is whether we can make
a proper definition for the negation of a question which should conform to the re-
quirement of the negation operator “=” in the definition of bilattices set out in Section
2, i.e. “=” should preserve the order in the interrogative lattice. One way to achieve
this is to define “=” such that for any question g,

I-all =refall =r (26)

For example, [10, 11] stipulated that “~” has null effect on questions, which is equiva-
lent to defining =q = g. But this definition runs counter to our intuition about nega-

° This is true only if we ignore the context-dependent effect of which.

10 The formal definitions of inner negation and outer negation can be found in [12].



tion. Therefore, | will try to provide alternative definitions for negated questions
which satisfy (26). | will consider WH-questions and polar questions in turn.

First consider a strongly exhaustive WH-question q asking for S, where S is a cer-
tain set. Its outer negation -q can be defined as another strongly exhaustive WH-
question asking for =S. Now the resolvedness condition of q is Sy, = &. When Sy =
&, we have S = S; and =S = S;. Thus, S; and S; are the semantic denotations of the
resolved CAs to ‘g’ and ‘=q’, respectively. In contrast, when Sy, # &, we cannot de-
termine S and =S because we do not know whether the elements in Sy, belong to S or
-S. Thus, Sy = @ is both a resolvedness condition of q and -q, and so (26) is satis-
fied.

However, under the above definition, the outer negation of a strongly exhaustive
WH-question often results in an unnatural question. For example, the outer negation
of “Which boy sang” is something like the following:

Which individual was not a boy who sang? (27)

Note that the above is a rather strange way to form an interrogative. It is completely
different from the natural interrogative “Which boy did not sing?”. While the latter
asks for BOY m =SING, the former asks for -(BOY n SING). Since the outer nega-
tion of a strongly exhaustive WH-question is unnatural, no sensible equivalence can
be derived for this type of questions.

Next consider a polar question whether(p). Its outer negation can be defined as the
polar question whether(-p)*?. Now the resolvedness condition of whether(p) is ||p|| #
uk, which is equivalent to ||p|| € {t, f}. This last statement is true iff [|-p|| < {t, f},
which is equivalent to || -p|| # uk. Thus we have the following equivalence:

whether(p) < whether(-p) (28)

and (26) is satisfied.

Under the above definition, the outer negation of a polar interrogative is its nega-
tive counterpart. For example, the outer negation of “Does John love Mary?” is
“Doesn’t John love Mary?”, provided that this negative polar interrogative is not read
as a rhetorical question.

According to [9], we can derive logical equivalences by combining the inner nega-
tion and outer negation of different GQs. For example, [9] proposed the following
valid inference schema:

Qu(A, {x: Q2(B, {y: P(x, y)D}) < (Qu)(A, {x: ~Qx(B, {y: P(x, Y)}}) (29)

™ In principle, it is also possible to define outer negation for non-exhaustive WH-questions.
But the result is even more bizarre. Given limited space, | will not discuss this issue in this
paper.

12 Although “— appears inside the argument position of whether, whether(-~p) should be seen
as the outer negation of whether(p), because whether(-p) satisfies the definition of outer ne-
gation.



where Q- represents the inner negation of Q;, whereas =Q, represents the outer ne-
gation of Q,. If we now substitute a suitable 1Q for Q; and an ordinary GQ for Q, in
(29), we will obtain an equivalence relation involving both 1Qs and ordinary GQs,
such as the following:

which(A, {x: some(B, {y: P(x, y)}}) < (all except which)(A, {x: no(B, {y: (30)
P(x,y)H}

In the above, | have made use of the fact that (all except which) is the inner negation
of which whereas no is the outer negation of some. The above schema may be exem-
plified by a concrete example:

Which boy has got some prize? < All except which boy has got no prize?  (31)

Note that the above is a sensible equivalence.

4.3  Answerhood

According to [10, 11], there is a special entailment relation between an interrogative
and the SA to that interrogative. Let p be a proposition and g a question. Then we
have the following™:

Proposition 3 If ‘p’ isan SAto ‘q’, then p = q.

To prove this, | have to consider several cases. When ¢ is a polar question in the form
whether(s), then p is either s or -s. Let ||p|| =t, which entails ||s|| =tor ||s]| =f. In
either case, ||s|| # uk. Then by (14), we have ||q|| = r. When q is a strongly exhaus-
tive WH-question whose resolvedness condition has the form Sy, = &, p has the form
S=S. Now let ||p]| =t, i.e. ||S =S| =t According to the definition of S,, we have
for all x, "x € S, || is either equal to t or f. This is equivalent to (Sy)u = <. But since S
= S, we have S, = @. Thus the resolvedness condition of q is satisfied, and so ||q] =
r. When g is a non-exhaustive WH-question whose resolvedness condition has the
form S; = @ v S¢ = U, p has the form X < S (where X < S; A X = &) or S = J. Now
let ||p|| =t, i.e. either || X =S| =tor ||S=@| =t Inthe former case, we have S, #
@. In the latter case, we have S; = U. In either case, the resolvedness condition of g is
satisfied, and so we have |q|| =r.

Proposition 3 shows that p = ¢ is a necessary condition for ‘p’ is an SAto ‘q’. In
other words, we can show that ‘p” is not an SA to ‘q’ by showing that p #= ¢. For
instance, we can show that “John sang” is not a resolved SA to “Which boy sang?” by
proving that “John sang” (assuming that “John” is a boy) does not entail “Which boy
sang?”. To prove this, we may construct a counterexample model. Let U = BOY, = {j,
b}, BOY:=BOY = I, SING; = {j}, SING; = &, SING = {b}. With respect to this
model, on the one hand, we find that ||j € SING|| =t i.e. “John sang” is true. On the
other hand, we also find that ||b € BOY n SING|| = uk, which shows that (BOY N

* The central idea of the following proposition is from [11]. But the proof is my own and is
presented in terms of the definitions and results in this paper.



SING)y # @. According to (4), we have ||which(BOY, SING)|| = r. Thus, “John
sang” does not entail “Which boy sang?”, and so the former is not a resolved SA to
the latter.

5 Conclusion

In Section 1, I have mentioned 3 adequacy criteria which an adequate framework for
interrogatives should satisfy. It is now time to see if the semantic model developed in
this paper satisfies these criteria.

It is clear that the semantic model is materially adequate, as the notions of
answerhood, entailments and equivalences are all definable under the model. Not only
have | provided the resolvedness conditions for various types of interrogatives, but I
have also provided explicit expressions for the semantic denotations of the CAs and
SAs corresponding to these interrogatives.

The model is also formally adequate, as the semantic notions are interpretable as
set-theoretic relations / operations. This point is particularly obvious as the
resolvedness conditions and the semantic denotations of the CAs and SAs correspond-
ing to various types of interrogatives are all expressed as set-theoretic relations or
operations.

Finally, the model is also empirically adequate in that certain inferential relations
that are intuitively correct are provable under the model. These include the interroga-
tive entailments and equivalences recorded in Section 4 as well as Propositions 1 and
2 concerning the monotonicities of 1Qs.
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