數學示例:特徵函數

我們在《數學示例:方程與方程組》中介紹了「微分/差分方程邊值問題」 的概念,指出這些方程不一定有解;即使有解,其解也可能並非唯一解。本 文主旨是運用線性代數中「特徵值」的概念研究某些特定的「微分/差分 方程邊值問題」和「弗雷德霍姆積分/和分方程」。

首先介紹具有以下一般形式的 2 階微分方程邊值問題:

$$D(k_2(x)Df(x)) + (k_0(x) + \lambda w(x))f(x) = 0,$$

$$a_1f(a) + a_2Df(a) = 0, b_1f(b) + b_2Df(b) = 0$$
 (1)

上式中的上下兩行分別為有關方程和邊界條件,其中 $k_2(x)$ 、 $k_0(x)$ 和 w(x) 是給定的函數, λ 是一個參數 (即變數), a_1 、 a_2 、 b_1 和 b_2 則是給定的常數,並且 $k_2(x)$ 和 w(x) 在 [a,b] 上須取正值,而 a_1 和 a_2 以及 b_1 和 b_2 則不可都等於 0。具有上述形式的邊值問題稱為正則斯圖姆-劉維爾問題(regular Sturm-Liouville problem)。舉例說,如在 (1) 中取 $k_2(x) = x$, $k_0(x) = 0$, $w(x) = \frac{1}{x}$, $a_1 = b_1 = 1$, $a_2 = b_2 = 0$, a = 1, b = e, 便可得到以下這個邊值問題:

$$D(xDf(x)) + \left(\frac{\lambda}{x}\right)f(x) = 0, \ f(1) = 0, \ f(e) = 0$$
 (2)

請注意 (1) 是一個「齊次邊值問題」,即其方程和邊界條件都不包含不含 f(x) 的項。容易看到,不論 λ 取甚麼值,零函數都是 (1) 的解,這種解稱為「平凡解」(trivial solution)。數學家關心的是找出 λ 在取何值的情況下 (1) 有非平凡解,他們把這樣的 λ 值稱為 (1) 的「特徵值」(eigenvalue),並把相關的非平凡解稱為<mark>特徵函數</mark>(eigenfunction) (下文會解釋此一名稱的理據)。

以(2)為例,這個方程可以改寫成以下形式:

$$x^2D^2f(x) + xDf(x) + \lambda f(x) = 0$$
, $f(1) = 0$, $f(e) = 0$ (3)

如把 λ 當作確定的實數,那麼 (3)是「2 階柯西-歐拉微分方程」。根據《數學示例:積分/和分因子》的 (19), (3)的輔助方程及其根為

$$t^2 + \lambda = 0$$
$$t = \pm \sqrt{-\lambda} \qquad (4)$$

接下來考慮三種情況:(i) $-\lambda = 0$ 、(ii) $-\lambda > 0$ 和 (iii) $-\lambda < 0$ 這三種情況 (其中 $\alpha > 0$),並看看 (3) 在哪種情況下有非平凡解。在情況 (i) (亦即 $\lambda = 0$) 下,(4) 提供一個二重實數根 t = 0,根據《數學示例:降階法》,(3) 中的方程的通解是 $f(x) = c_1 + c_2 \ln x$ 。把此一結果代入 (3) 中的邊界條件,可得到以下方程組:

 $\begin{cases} c_1 = 0 \\ c_1 + c_2 = 0 \end{cases}$

解上述方程組,可得 $c_1 = c_2 = 0$,即 (3)的特解是 f(x) = 0。由此可知,當 $\lambda = 0$ 時,(3)只有平凡解,因此 0 不是 (3)的特徵值。

在情況 (ii) (亦即 $\lambda < 0$) 下,不妨設 $\lambda = -\alpha^2$ (其中 $\alpha > 0$)。由此從 (4) 可得到兩個相異實數根 $t = \pm \alpha$,因此 (3) 中的方程的通解是 $f(x) = c_1 x^{\alpha} + c_2 x^{-\alpha}$ 。 把此一結果代入 (3) 中的邊界條件,可得到以下方程組:

$$\begin{cases} c_1 + c_2 = 0 \\ c_1 e^{\alpha} + c_2 e^{-\alpha} = 0 \end{cases}$$

把上面第一個方程代入第二個方程,可得 $c_1(e^{\alpha}-e^{-\alpha})=0$ 。在 $\alpha>0$ 的假 設下, $e^{\alpha}\neq e^{-\alpha}$,因此上述方程組的解只能是 $c_1=c_2=0$,即 (3) 的特解是 f(x)=0。由此可知,當 $\lambda=-\alpha^2$ 時,(3) 只有平凡解,因此任何負實數都 不可能是 (3) 的特徵值。

在情況 (iii) (亦即 $\lambda > 0$) 下,不妨設 $\lambda = \alpha^2$ (其中 $\alpha > 0$)。由此從 (4) 可得到一對互相共軛的複數根 $t = \pm \alpha i$,因此 (3) 中的方程的通解是 $f(x) = c_1 \cos(\alpha \ln x) + c_2 \sin(\alpha \ln x)$ 。把此一結果代入 (3) 中的邊界條件,可得到以下方程組:

$$\begin{cases} c_1 = 0 \\ c_1 \cos \alpha + c_2 \sin \alpha = 0 \end{cases}$$

把上面第一個方程代入第二個方程,可得 $c_2 \sin \alpha = 0$ 。為得到非平凡解,必 須假設 $c_2 \neq 0$,由此必有

$$\sin \alpha = 0$$

$$\alpha = n\pi \ (n = 1, 2, ...)$$

因此 (3) 的特解是 $f(x) = c_2 \sin(n\pi \ln x)$ 。由此可知,對每個 n = 1, 2, ..., $\lambda = n^2\pi^2$ 是 (3) 的特徵值,而對應於這個特徵值的特徵函數是 (以下把這個函數的任意常數改寫成 c):

$$f(x) = c\sin(n\pi \ln x) \qquad (5)$$

接著介紹具有以下一般形式的 2 階差分方程邊值問題:

$$\Delta(k_2(x)\Delta f(x)) + (k_0(x) + \lambda w(x))Ef(x) = 0,$$

$$a_1f(a) + a_2Ef(a) = 0, \ b_1f(b) + b_2Ef(b) = 0$$
 (5)

上述問題可被看成「正則斯圖姆-劉維爾問題」的差分方程版本。舉例說,如在 (1) 中取 $k_2(x) = w(x) = 1$, $k_0(x) = 0$, $a_1 = b_1 = 1$, $a_2 = b_2 = 0$, a = 0, b = 4, 便可得到以下這個邊值問題:

$$\Delta^2 f(x) + \lambda E f(x) = 0, \quad f(0) = 0, \quad f(4) = 0$$
 (6)

前面介紹的「特徵值」和「特徵函數」概念也適用於 (5) 這種邊值問題。以 (6) 為例, 這個方程可以改寫成以下形式:

$$E^{2}f(x) + (\lambda - 2)Ef(x) + f(x) = 0, \ f(0) = 0, \ f(4) = 0$$
 (7)

如把 λ 當作確定的實數,那麼 (7) 是「2 階常係數線性差分方程」,可以運用《數學示例:基本解集》中介紹的方法求上述三個情況下的通解。根據上述網頁的 (6),上式的輔助方程及其根為

$$t^{2} + (\lambda - 2)t + 1 = 0$$

$$t = \frac{2 - \lambda \pm \sqrt{\lambda(\lambda - 4)}}{2}$$
 (8)

接下來考慮三種情況:(i) $\lambda(\lambda-4)=0$ 、(ii) $\lambda(\lambda-4)>0$ 和 (iii) $\lambda(\lambda-4)<0$ 這三種情況,並看看 (7) 在哪種情況下有非平凡解。在情況 (i) (亦即 $\lambda=0$ 或 $\lambda=4$) 下,不妨設 $2-\lambda=2\alpha$ (亦即設 $\alpha=\pm1$)。由此從 (8) 可得到一個二重實數根 $t=\alpha$,因此 (7) 中的方程的通解是 $f(x)=c_1\alpha^x+c_2x\alpha^x$ 。把此一結果代入 (7) 中的邊界條件,可得到以下方程組:

$$\begin{cases} c_1 = 0 \\ c_1 \alpha^4 + 4c_2 \alpha^4 = 0 \end{cases}$$

解上述方程組,可得 $c_1 = c_2 = 0$,即 (7)的特解是 f(x) = 0。由此可知,當 $\lambda = 0$ 或 $\lambda = 4$ 時,(7)只有平凡解,因此 0和 4都不是 (7)的特徵值。

在情況 (ii) (亦即 $\lambda < 0$ 或 $\lambda > 4$) 下,不妨設 $2 - \lambda = 2\alpha$ (由此有 $\alpha > 1$ 或 $\alpha < -1$)。由此從 (8) 可得到兩個相異實數根 $t = \alpha \pm \sqrt{\alpha^2 - 1}$,因此 (7) 中的方程的通解是 $f(x) = c_1(\alpha + \sqrt{\alpha^2 - 1})^x + c_2(\alpha - \sqrt{\alpha^2 - 1})^x$ 。把此一結果代入 (7) 中的邊界條件,可得到以下方程組:

$$\begin{cases} c_1 + c_2 = 0 \\ c_1(\alpha + \sqrt{\alpha^2 - 1})^4 + c_2(\alpha - \sqrt{\alpha^2 - 1})^4 = 0 \end{cases}$$

把上面第一個方程代入第二個方程,可得 $c_1((\alpha+\sqrt{\alpha^2-1})^4-(\alpha-\sqrt{\alpha^2-1})^4)=0$ 。

現在如果定義以下算子:

$$Tf(x) = D(k_2(x)Df(x)) + k_0(x)f(x)$$
 (3)

那麼可以把 (1) 改寫成以下形式:

$$Tf(x) + \lambda w(x)f(x) = 0 (4)$$

連結至數學專題 連結至周家發網頁